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Abstract/Résumé

The present work studies the experimental characterization and modeling of the anisotropy

induced by Mullins effect, i.e., the loss of stiffness in the first loading cycles, often observed

in rubber-like materials. After a description of the mechanical characteristics of the partic-

ular silicone material used in our study, experimental tests are developed to create original

and complex loading histories. First, successions of conventional uniaxial tensile tests are

performed with changing directions of loading. Second, the state of heterogeneous stress

and strain obtained in circular membrane swelling tests was completely characterized by

means of kinematic field measurements made by the 3D image correlation method, and

the loadings are then biaxial tension followed by uniaxial traction. The key parame-

ters for modeling the Mullins effect were able to be identified, including its isotropic and

anisotropic parts. A model was thus developed based on the double-network theory taking

into account the experimentally motivated criteria. A suitable version with simple imple-

mentation in a finite element computer code was finally developed to allow the calculation

of a structural part.

Le présent travail étudie la caractérisation expérimentale et la modélisation de l’anisotropie

induite par effet Mullins, i.e., la perte de raideur après les premiers cycles de charge-

ment, très souvent observée dans les matériaux de type élastomère. Après une description

des caractéristiques mécaniques du matériau silicone utilisé dans notre étude, des essais

expérimentaux originaux sont développés pour créer des historiques de chargement com-

plexes. D’une part, des successions d’essais de traction uniaxiale classiques sont réalisées,

avec changement de directions de chargement. D’autre part, des états hétérogènes de

contrainte et déformation obtenus lors d’essais de gonflement de membrane circulaire ont

été complètement caractérisés grâce à des mesures de champs cinématiques réalisées par

la méthode de corrélations d’images 3D ; les chargements effectués sont alors de type trac-

tion biaxiale-traction simple. Les paramètres clés pour la modélisation de l’effet Mullins

ont ainsi pu être mis en évidence, avec notamment ses parts isotrope et anisotrope. Un

modèle a ainsi été développé à partir d’une théorie de double réseau prenant en compte

des critères expérimentalement motivés. Une version adaptée à une implantation simple

dans un code de calculs éléments finis est finalement développée pour la réalisation de

calculs de structures.
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Preface

The eel-like robot motivation

This thesis work, is part of a multidisciplinary research project Robot Anguille Autonome

en Milieu Opaque (RAAMO ANR) where the purpose is to study, design, build, and con-

trol an eel-like robot able to swim in three dimensions. As has been noted in the biorobotics

community, eel-like robots are a promising perspective for improving the efficiency and

maneuverability of modern-day underwater vehicles (Boyer et al., 2006a, 2008). The in-

terest lies in the anguilliform locomotion of an amphibious mobile robot that can traverse

uneven terrain or confined spaces like tunnels or pipes using serpentine motions and three-

dimensional dynamic aquatic environments using eel-like motions. See Sfakiotakis et al.

(1999) for a review of fish swimming modes. The authors compared from anguilliform,

through subcarangiform and carangiform to thunniform swimming movements.

The RAAMO technology can be directly applied to the exploration, monitoring and

surveillance of highly constrained and inaccessible environments such as nuclear reactor

cores, underground toxic waste tanks, and deep-sea exploration as well as to the hu-

man intestine and circulatory system on a microscopic scale. Still pursuing a biomimetic

paradigm, RAAMO will mimic an electric sense that gives it a degree of sensory autonomy

adapted to its biomimetic mode of locomotion. This electric sense is used for navigation

and communication by several families of fishes whose activity is principally nocturnal

and whose natural habitat is the turbid or particle-charged waters.

Swimming capacity of fishes is far superior in many ways to what has been developed

by nautical science and technology. They use their streamlined bodies to exploit fluid-

mechanical principles. The extraordinary efficiency of the fish as a swimming device is

partly due, it now seems, to an evolved capacity to couple its swimming behaviors to the

pools of external kinetic energy found as swirls, eddies, and vortices in its watery environ-

ment. The fish and surrounding vortices together constitute an unified and remarkably

efficient swimming machine. In this way, they can achieve extraordinary propulsion ef-

ficiencies, acceleration and maneuverability not possible by the best naval architectures

(Triantafyllou and Triantafyllou, 1995; Chablat, 2008). More particularly, as far as un-

derwater maneuverability is concerned, the high number of internal degrees of freedom of

anguilliform fish make these animals hyper-redundant locomotors capable of moving with

xv
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Figure 1: The European eel. Picture by Zienert, S. in www.fishbase.org.

great agility in constrained environments (Boyer et al., 2010). For example, in Fig. 1, the

European eel (Anguilla anguilla) counts 110 to 120 vertebras.

Research into robotic technology that can move dynamically in three-dimensions led to

the development of hyper-redundant manipulators, i.e., redundant manipulators where the

relative degree of redundancy is either a very large number (from the number of relatively

identical rigid links) or infinite (the case of a relatively homogeneous flexible physical

structure). Fig. 2 illustrates this concept. The hyper-redundant manipulators are classified

into two groups. Tensors (manipulators with a fixed body length) mimic the morphology

and function of snakes, elephant trunks or tentacles. Extensors (manipulators with elastic

bodies or elastic sections between rigid links that can be stretched and contracted to

change the overall body length) mimic more elastic animal bodies like invertebrates, such

as slugs and worms. Robotic manipulators with high or infinite number of degrees of

freedom can operate in highly constrained environments and articulate a larger range of

motions than other systems because they have greater adaptability and versatility in their

shapes.

From the mechanical design point of view the RAAMO eel-robot is composed of 12

vertebras, with 3 degrees of freedom each one, connected through a rotation free joints

resulting in a set of parallels kinematic architectures, as shown in Fig.3. The good per-

formance of RAAMO underwater biomimetic vehicle are due to the high redundancy of

their internal kinematics with respect to the six-dimensional task consisted in moving their

head.
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Figure 2: The eel as a redundant tensor manipulator and the body decomposition.

Figure 3: The eel robot assembly, extract from Boyer et al. (2006b).

The eel robot skin problematic

The objective of this work in the global RAAMO project is to give to the prototype

a highly performance artificial skin that is especially designed to cover the prototype

skeleton. This flexible organ plays at the same time the role of the animal muscles and

skin. Moreover, it must be designed in order to guarantee the continuity of the robot

contact with the fluid preserving the actuators energy resources.

In all projects of bio-mimetic submarine currently in progress or even accomplished,

the solutions to the problem of artificial skin are similar of RAAMO interim solution

used for testing the first submerged movements of the prototype. Thus, to our knowledge

there is no literature specifically devoted to this problem in terms of material engineering

and structural analysis. The most mature research on this subject are undoubtedly those

conducted by the Massachusetts Institute of Technology (MIT)-Towing Tank Group, in
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particular on their Robot-Pike (Triantafyllou et al., 2010) and Robot-Tuna (Mellott, 2009)

projects.

To solve the problem of the skin, the MIT team developed a specific coil spring adapted

to bending in the plane of propulsion. The light structure is made of a fiber glass based

material coated by a stretchy membrane fabric. Because of the porosity of the membrane

fabric, the robot has a hull wet. As pointed by Briand (2004) this solution, like those

adopted previously, is dedicated to a robot with carangiform shape where the actuators

are centered in the body of the robot, whereas RAAMO power must be distributed along

the body and the place of actuators are restricted by the limitation of lateral space. An

additional difficulty is induced by the eel architecture that requires a best power consump-

tion optimization where skin deformation process must preserve the resources necessary

for swimming. Moreover, contrary to all existing carangiforms robots, the RAAMO pro-

totype can deform in three dimensions (two bendings and one torsion) as consequence of

the movements of pitch, roll and yaw, presented in Fig. 4.

Figure 4: The eel body movements and the axis definitions.

Fig. 5 presents the geometry of a section between to vertebras with their main di-

mensions. For these dimensions, Briand (2004) and Boyer et al. (2006b) showed how the

curvature radius evolves for the yaw movement and results are presented in Fig. 6. Note,

for a critical case, a radius of 0.2m is expected when the yaw angle is 30 ◦. In this case, the

external curvature increases over 24% whereas the internal curvature decreases in 28%.

The skin material must be elastically deformable in this range at a low level of strain

energy. Finally, it is possible to summarize the skin main specifications:

• Provide a drag-surface since swimming involves the transfer of momentum from the

fish to the surrounding water (and vice versa);

• Ensure the continuity of the body curvature as the modeling approach used in

RAAMO is based on the geometrically exact continuous beam theory;
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• Provide a smooth interface with the fluid without any resistance to the movement;

• Water resistent characteristic to protect the motors and other internal components

from water;

• Respect the deformation power limit, estimated at 0.4W, for each vertebra.

• Skin material must be elastically deformable on the order of 25% at a strain rate

2 s−1 approximately.

• Minimizes the internal volume variation on the order of 5%.

Figure 5: Intervertebral kinetics schema. With L = 75mm, D = 160mm, d = 110mm
and θmax = 30 ◦.

Material choice

Rubber-like materials are able to largely deform to ensure the skin problem constraints

evolved in the last section. The choice of a filled silicone rubber, the RTV3428, was made

to design the eel-robot skin since this type of material exhibits a suitable set of mechanical

properties and especially the facility to manufacturing the skin in the laboratory environ-

ment. The final skin will be an assembly of a rigid skeleton and the silicone rubber. The

rigid skeleton is necessary to minimizes volume variations due the hydrostatic pressure,

seeing that the silicone rubber can be easily deformed.

RTV3428 final material is obtained from two liquid component and this class of silicone

elastomer cures at room temperature by a polyaddition reaction. This type of reaction will

lead to easy processing and curing. The curing process starts once the two components

are mixed, at a ratio that depends on the operating temperature, i.e., the reaction can be

accelerated by heat.
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Figure 6: The curvature radius and the yaw angle relation.

This type of material is frequently employed in the production of flexible molds to be

kept for long periods or where particularly accurate reproduction is required (ceramics,

figurines, modelmakers, etc.) and in the production of thermal expansion formers for com-

posite materials (the aeronautic industry, boat-building, etc.). The final piece inherently

does not adhere to most materials and presents a high tear strength, compared to conven-

tional RTV with low linear shrinkage when crosslinked at ordinary temperature. Table 4

summarizes the main mechanical characteristics of RTV3428 silicone rubber. Silicone rub-

ber exhibits a list of attractive characteristics, but a complete experimental study aimed

at analyzing and modelling the mechanical behavior of such materials is quite scarce.
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Table 4: RTV3428 properties measured after curing 24 h at 23 ◦C. Values were extracted
from the manufacturer’s data sheet.

Mechanical Property RTV3428

Hardness Shore A 28
On a 6 mm thick specimen, approx.

Tensile strength at break 7.5MPa
(Approx.)

Elongation at break 600%
(Approx.)

Tear strength 20KN/m
(Approx.)

Linear shrinkage 0.1%
(7 days after curing at 23 ◦C)

Global aim

In order to design, modeling and optimize the RAAMO eel-robot skin, it is important

to perfectly know the silicone rubber mechanical behavior. Like many filled rubber-like

materials, as well as soft biological tissues and other biomaterials, filled silicone rubber

exhibits highly non-linear mechanical behavior. This non-linearity is commonly charac-

terized by large strain levels, a non-linear stress-strain response, hysteresis and strain rate

dependence. Under cyclic loading conditions, the stress-softening (also called Mullins ef-

fect) behavior is observed and it is preponderant compared to other nonlinear phenomena.

It is then important to characterize the stress softening to evaluate the skin swimming

behavior as well the assembly operations with the robot body.





General Introduction

The word rubber originally comes from the natural product of the tree Hevea Braziliensis.

The sap-like extracted from this northern Brazilian tree, often simply called rubber tree,

is the primary source of natural rubber. Recent years have seen the development of a

very large number of synthetic rubbers having a wide variety of chemical constitutions.

To further improve the stiffness and the strength and among other properties of rubber, a

variety of additive fillers is also employed. Thus, the term rubber gains a broader meaning

which is employed to describe a class of materials, or simply called rubber–like materials.

In this work attention is focused on the study of a particle reinforced silicone rubber.

Rubber-like materials exhibit a highly nonlinear stress-strain behavior characterized

by hyperelastic deformability and incompressibility or near-incompressibility. However, all

real materials are compressible to a certain degree even if the bulk modulus of the rubber-

like materials is several orders of magnitude larger than the shear modulus. Moreover,

some filled rubbers after loading and subsequent unloading, in general, do not return to

their initial state corresponding to the natural stress-free configuration. A residual strain

or permanent deformation appears. In addition, the mechanical behavior of rubber-like

materials can be time-dependent and characteristics times are given by relaxation and

creep experiments.

Finally, when a rubber specimen is subjected to cyclic loading, a stress softening, also

called Mullins effect, is observed. This phenomenon is characterized by an important loss

of stiffness during the first few cycles. Different definitions exist for the Mullins effect. In

this work, Mullins effect is considered as the stress softening observed between first and

second loads. Many researchers are studying this effect by means of experimental tests.

Moreover, different phenomenological-based models or molecular-based models are also

developed. Phenomenological models are used to describe the Mullins effect based purely

on experimental observations and molecular-based models are used to explain the effect

by the macroscopical nature of the rubber molecular structure. However, experimental

data show that the Mullins effect is of a strongly anisotropic nature and it may not be

neglected.

This PhD thesis, composed by five chapters, is a compilation thesis containing four

articles exactly as they were published or submitted. The contents presented in the papers

have also been analyzed in relation to the literature. Rather than describing this iterative

1
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process in detail in a dedicated chapter, it will be presented in the different parts of the

thesis work.

In Chapter 1, the silicone rubber samples manufacture procedure and the experimen-

tal protocol to obtain the experimental results that illustrate the stress softening are

presented. Cyclic uniaxial tension, planar tension and biaxial tension test are detailed.

Experimental curves are analyzed in order to discuss which criteria are most adequate to

describe the Mullins effect in an isotropic approach. The used criteria by the most repre-

sentative isotropic models of the literature are compared and limitations are highlighted.

In order to enlarge the experimental data base, a detailed analysis of the bulge test is

proposed in Chapter 2. Thanks to the use of three-dimensional digital image correlation

measurements, the displacements and strain fields are determined for each point in the

sample surface. This feature permits to comprise, in the same test, all loading cases be-

tween the planar and equibiaxial tensions. Furthermore, a method is proposed to calculate

from these experimental data the membrane curvature tensor at each surface point of the

bulge specimen to obtain the stress field without any constitutive equation assumption.

Finally, the theoretical and experimental development are validated on experimental data

from an unfilled silicone rubber perfectly hyperelastic, i.e., without Mullins effect.

Chapter 3 is concerned with the experimental characterization of anisotropy induced by

the Mullins effect in a particle-reinforced silicone rubber. Due to the fact that experimental

data concerning the influence of type and direction of initial loading on the subsequent

stress-softening are quite scarce, a set of experimental tests were carried out on a filled

silicone rubber. Uniaxial tensile test and biaxial bulge test were used to precondition

the samples inducing some primary stress-softening. In both cases, subsequent uniaxial

tensile tests are conducted on preconditioned specimens. These specific tests form a new

important experimental data, and it permits to find an evidence for more complex memory

behavior of the material. An analysis of these tests is proposed to evaluate which criteria

should or should not be used for modelling Mullins effect induced anisotropy.

Based on the previous results, in Chapter 4, a new network model for finite elasticity of

rubber-like materials is proposed taking into account the induced anisotropy phenomena.

The model structure is built by superposing a classical hyperelastic model and a stress-

softening part based on the double network theory. The core of the proposed model is

the definition of a new measure of strain energy, introduced by a tensor that represents

the repartition of the elongational energy in space. A new form of constitutive equation

is finally proposed by comparing the energy in different directions in space. The modeling

results are compared with all experimental data produced during the thesis work and the

ability of the model to capture the stress softening phenomenon is underlined.

In order to use the proposed model in the analysis of engineering structures, the im-

plementation into a finite element code is needed. Details of numerical implementation

are explained in Chapter 5. First, a brief review of some essential aspects of continuum

mechanics and basic kinematic relations for the description of large strain analysis are

presented. Then, the initial boundary-value problem is presented as well the variational

principle using two variables since displacements and pressure-field are separately inter-

polated due to the incompressible behavior. To simplify the implementation procedure a

simplified model for anisotropic Mullins effect is proposed. Then, it is implemented into a
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finite element code via an user-defined material subroutine. The finite element simulation

results are confronted with analytical solutions to validate the implementation.

Finally, in the last part, an overall conclusion is drawn from the findings in the previous

chapters, with recommendations about possible future directions.





Chapter

1 Analysis of the isotropic models of the Mullins

effect based on filled silicone rubber experimen-

tal results

G. Machado, G. Chagnon, D. Favier

Published in Mechanics of Materials 42 (2010) 841-851

The Mullins effect of rubber-like material is classically defined as the stress softening

during initial loading cycles. This effect is not accounted when the mechanical proper-

ties of material are modeled by a simple hyperelastic strain-energy function. In order to

capture the stress softening it is necessary to define a set of supplementary variables as

well as a dissipation function, which evolves with the deformation history. In this paper,

we first describe experimental results that illustrate stress softening in particle-reinforced

silicone rubber for uniaxial, planar and equibiaxial tensile tests. The results allow to ana-

lyze the stress softening for the three different load cases. First, with respect to the choice

of a stress-softening measure, the energy loss is evaluated by comparing the stored elastic

energy for the first and the second loadings. The results point out that the virgin en-

ergy and the first invariant parameters are the best choice. Nevertheless, the maximum

principal elongation, classically used in Mullins effect modeling, is not able to describe

the different load cases. Furthermore, the ability of different class of models to describe

filled silicone rubber is studied. The results show that models with a non-proportional and

non-homothetical second load paths seem to be more efficient.
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1.1 Introduction

Like many filled rubber-like materials, as well as soft biological tissues and other bioma-

terials, filled silicone rubber exhibit highly non-linear mechanical behavior. This non-

linearity is commonly characterized by large strain levels under static conditions, a non-

linear stress-strain response and strain rate dependence. Finally, under cyclic loading

conditions, hysteresis and stress-softening behaviors are observed on both filled and un-

filled elastomers. For the last half century all these cyclic phenomena were evidenced and

modelled to support the most widely engineering applications. However, explanation of

their microscopic mechanisms (breaking of weak chains, breaking of links, desabsorption

of chains, etc.) remains non-unanimous.

Hysteresis is rather related to the dissipative nature of material, i.e., related with

viscoelasticity (Bergstrom and Boyce, 2000) and viscoplasticity (Miehe and Keck, 2000)

behaviors. It is characterized as the difference between the loading and unloading paths

during a cycle. On the other hand, the so-called Mullins effect (Mullins, 1969) can be

described as a stress-softening phenomenon of the material after a first loading. It can

be idealized as an instantaneous and irreversible softening of the stress-strain curve, due

to rearrangements in the microstructure of the material that occur whenever the load

increases beyond its prior all-time maximum value. At times when the load is less than

a prior maximum, non-linear elastic behavior prevails. One time the previous maximum

stretch is reached the loading path turns up and follows the primary curve again up to a

new maximum.

Through the years, the Mullins effect has experimentally been observed in different

deformation states and numerous models have been proposed, but there is non-unanimous

opinion on the choice of the variable to describe the evolution of the Mullins effect. Many

different criteria have been chosen during the last 50 years, the most used remains the

strain-energy density or the maximum principal elongation. Within this context, under

the assumption of isotropy, the aims of this work are to analyze which are the most suitable

modelling for Mullins effect for different loading cases. In this way, a filled silicone rubber

is studied under various mechanical loadings, where the Mullins effect becomes evident.

Then, the determination of the best criterion to describe the evolution of stress softening

and the kind of model able to describe it for every loading cases are evaluated. Hence,

the different types of modelling are summarized in 1.2. Material preparation procedures

are described in Section 1.3, testing procedures and strain field measurements techniques

based on optical methods are described in Section 1.4. Experimental results are then

presented, in Section 2.4.1. An analyze of the strain measure criteria and the best way to

model Mullins effect is finally presented in Section 1.6.
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1.2 Mullins effect modelling

There exist a large number of Mullins effect constitutive equations, with different kind

of isotropic or anisotropic modelling hypotheses. More and more modelling tackles the

anisotropy of the Mullins effect (see for example, Ehret and Itskov, 2009; Diani et al.,

2006b; Miehe and Göktepe, 2005). In this paper, we focus on isotropic approaches of the

Mullins effect to analyze what are the best ways of modelling. Whatever is the modelling,

a deformation measure parameter is used to control Mullins effect evolution and its choice

is critical.

1.2.1 Choice of the modelling

A classical approach to describe Mullins effect is to use damage mechanic theory. The

strain-energy density of a virgin material W0(F) submitted to the deformation gradient

F can be modified incorporating continuum damage parameter d in order to take into

account the stress softening. The classical form is given by

W(F) = (1− d)W0(F). (1.1)

All proposed models vary from each other by the definition of the damage criteria and the

form of the damage evolution function. The definition can involve any microstructural

chain damage and microvoid formations both associated with physical phenomena like

breaking of chains and/or links, desabsorption of chains, etc. A common approach assumes

that damage is a function of a discontinuous quantity like the maximum applied stretch

or the maximal energy density with respect to the primary load path. Nevertheless, as

reported by Chagnon et al. (2004), these models assume that the stress ratio between two

different secondary load curves are related by a constant multiplicative factor:

P j
s

P i
s

=
1− d(xjs)

1− d(xis)
(1.2)

where s denotes the secondary load curves numbered i = 1, . . . , 3 and j = 2, . . . , 4 (i < j)

for the presented experimental data.

Pseudo elasticity models are based on a different approach. Ogden and Roxburgh

(1999) present an additive function to describe the second loading curves, this permits to

have two distinguished functions to describe the first and the second loading curves. In

this case, some conditions must be imposed to ensure the continuity of the strain-stress

behavior. Now, no more proportionality is imposed between the second loading curves

and the evolution function for the second loading curves is described by means of W0

measure. This permits to have a model able to characterize the different loading cases.

This approach has been very employed in the past few years (see for example, Dorfmann

and Ogden, 2004; Horgan et al., 2004).

The double network theory is different from damage mechanics as the multiplicative

function used for describing Mullins effect is not constant on the second loading curves. It

can no longer be considered as a damage function as the value of the function is evolving

on second loading curves and it comes back to a value of one on the first loading curve

whereas the material has already be stretched. De Souza Neto et al. (1994), based on the
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Table 1.1: Definition of damage criteria for some representative models

Variable Description Reference√
2W0(F) Simo (1987), Miehe and Keck (2000),

Septanika and Ernst (1998)

W0(F) Ogden and Roxburgh (1999),
Laraba-Abbes et al. (2003), Miehe (1995)

λmax Maximum largest principal stretch Laiarinandrasana et al. (2003)√
I1/3− 1 I1 = trace(C) = trace(B) Chagnon et al. (2004),

Qi and Boyce (2004)

ε : ε ε = 1
2

(
C−1 − I

)
Lion (1996)

√
B : B B = FFT Zuñiga and Beatty (2002)

√
e : e e = 1

2

(
I−B−1

)
Krishnaswamy and Beatty (2000)

Pmax Maximal principal stress Johnson and Beatty (1993)

C, B, ε and e are respectively the Right Cauchy-Green, Left Cauchy-Green,
Piola and Euler-Almansi strain tensors. I denotes the so-called identity tensor.

idea of Gurtin and Francis (1981) proposed a damage master curve, that describes the

evolution of the network, that is magnified to the considered maximum previous strain

level.

A physical approach, proposed by Marckmann et al. (2002) is based on the position of

the strain hardening when the material reaches it maximum previous deformation level.

They assume that the macro-molecular chain network is evolving with the maximum

deformation, they assume that the number of active monomers is constant. This hypoth-

esis was relaxed by Chagnon et al. (2006) who considered that some chains can become

hanging, that means that the number of active monomers is a decreasing function of the

deformation. In another way, Qi and Boyce (2004) developed a double network model

also based on evolution of chain elongation deformation measure. This permits to have

independent second loading curves.

As shown, there exists a large kind of models (all existent models have not been

presented here) but it seems that the choice of an energy deformation measure is quite

important. This choice ensures an ability of the model to describe the different load cases,

moreover the different modelling have different consequences on the strain-stress curves.

1.2.2 The history parameter choice

The choice of the Mullins effect evolution criterion is fundamental for the description of

different loading cases. As pointed out by Diani et al. (2009), many criteria are exhibited

by different authors. The Table 1.1 summarizes different choices of the past years. Usually,
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the choice of the measure is not justified, but is able to represent the experimental curves.

For an uniaxial representation, the choice of the parameter is not essential, as all can

describe the stress softening. The Mullins effect evolution function is then built in function

of this parameter. Nevertheless, in a tridimensional representation, the choice becomes

very crucial as it rules the position of the second loading curves in the different deformation

modes. In the next sections, the experimental procedures and results are provided to

enhance this discussion.

1.3 Preparation of the Silicone Specimens

The samples used in the experiments were made of a filled silicone rubber called Rhodorsil

RTV3428 supplied as two liquid components: the uncured silicone and the curing agent.

The final material is produced by a polyaddition, curing at room temperature. The liquid

mixture is molded by injection to obtain a sheet with constant thickness. Although the

experiments are performed separately and the strain states are different, data from all of

the individual experiments is often used as a set. This means that the specimens used for

each of the experiments must be made using the same protocol of elaboration, in order

to obtain specimens with reproducible mechanical properties, as follows: (i) mixing the

components with a 10/1 mass ratio, (ii) putting the mixture under vacuum for 20min in

order to eliminate undesirable entrapped air bubbles, (iii) sheet molding injection, (iv)

putting mold inside an oven at 70 ◦C for 4 h in order to accelerate the curing process

and assure a sufficient cross-linking density, and (v) sheet demolding after 1 h exposed

at ambient temperature. Finally, the external surface of the molded plate was coated

with a stochastic silicone paint pattern (Meunier et al., 2008). Made of small speckles,

the pattern is necessary for the digital image correlation (DIC) and stereo digital image

correlation (SDIC)∗ field measurements. Note that the quality of the coated pattern (size,

density and grey contrast level) is a critical point to obtain a good estimation of the strain

field measurement.

1.4 Testing procedures and strain field measurements techniques

1.4.1 In-plane tests

In-plane quasi-static experiments were conducted on a MTS 4M universal testing machine

with an Entran ELPM-T2 ±250N load cell. The images were recorded at 0.5Hz with a

Jai TM-4200GE CCD camera using a reduced scan of 2048 pixels × 1000 pixels. Fig. 1.1

presents the experimental setup. First, simple tensile tests were performed on rectangular

samples having an initial gauge length l0 = 40mm, width w0 = 13mm and a thickness

e0 = 2mm. Since the experiment was not intended to fail the specimen, there was no need

to use a dumbbell shaped specimen commonly used to prevent specimen failure nearby the

clamps. But knowing that the effects of clamps create an indeterminate state of stress and

strain in the region surrounding the clamp, due to the process of gripping, the initial gauge

length was adopted as being less than the real physical size of the samples. Fig. 1.2(a)

∗also called 3D-DIC.
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Figure 1.1: In-plane experimental setup. (a) silicone specimen; (b) clamps; (c) load cell;
(d) omni light; and (e) CCD camera.

Figure 1.2: Test specimen dimensions (a) uniaxial tensile specimen (b) planar tensile
specimen.

presents the tensile test specimen. Second, the pure shear strain state was approached by

performing planar shear tensile test (see Fig. 1.2(b)). The initial height l0, the constant

width w0 and the thickness e0 of samples were 8mm, 70mm and 2mm, respectively. These

dimensions have as objective to create an experiment where the specimen is perfectly
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constrained in the lateral direction such that all specimen thinning occurs in the thickness

direction.

The DIC technique, like a non-contact method, is often used to characterize rubber-like

materials, see for example, Meunier et al. (2008) and Sasso et al. (2008). In each testing

time step an image of the deformation of samples was recorded using a CCD camera. Using

the DIC, it is possible to reconstruct the surface of the deformed samples and determinate

the full-field surface displacements. An accuracy on the order of 10−2 pixels or better for

in-plane displacement components and point-to-point strain accuracy of ±10−4 in-plane

can be obtained. The DIC method is preferred because there is no change in stiffness

resulting from the presence of a attached sensor (classical extensiometry) and for being

insensitive to ambient vibrations and rigid body motions (speckle pattern interferometry).

Moreover, the method is able to deal with high strain levels, what is a very desirable

feature given the high strain level experienced by the tested material. Also the DIC allows

demonstrating and measuring a heterogeneous deformation field. See Sutton (2008) for

further explanation about digital image correlation method.

1.4.2 Out-plane tests

A bulge test was also conducted in order to determinate an equibiaxial state. This test,

also called “balloon”test, consists of a thin disk specimen, of initial diameter d0 = 180mm

and thickness e0 = 2mm, constrained between two clamping flanges. This test machine,

performed at the same way in Meunier et al. (2008), consists of a air piston connected

to the bottom circumferential clamp. The internal pressure is measured with a pressure

sensor Foxboro 0-500mbar. For these tests, out-of-plane displacements measurements

were needed, therefore a Dantec Q-400 Stereo Digital Image Correlation (SDIC) system

was used to acquire and correlate the images. Fig. 1.3 presents the experimental setup.

Since a large out plane displacement is experienced by the silicone sample, a good focal

distance is absolutely necessary. Nevertheless, a high spatial resolution is needed to permit

an accurate measurement. Using the stereo-correlation it is possible to reconstruct the

deformed sample surface geometry as well as determinate the displacement and strain

fields. Because rigid body motion has no effect on the measurements, a high level of

strain has been achieved in this kind of experiment. The Fig. 1.4 shows the strain level

curves for the maximal pressure value of 18 kPa in the center of the membrane. The

curvature on the top of the bulge is computed, using a post-treatment routine.

1.5 Experimental results

First, time dependence of the material is studied and then the stress softening is analyzed.

Different tests are realized to evaluate the Mullins effect in different loading cases. To

capture a large range of loading cases: uniaxial, planar and equibiaxial extensions are

tackled. This permits to obtain very different paths in the well-known I1, I2 invariants

plane, which is recalled under incompressibility hypothesis in Fig. 1.5.
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Figure 1.3: Bulging test set-up. (a) bulge specimen; (b) circular clamp; (c) CCD cameras;
and (d) pressure sensor.

Figure 1.4: First principal strain (Green-Lagrange measure) in the center of the membrane
for the maximal pressure value of 18 kPa.

1.5.1 Time dependent response

A creep tensile test was performed, where a constant monotonic load of 20N was applied

resulting in a initial stretch of λi = 2.16. It can be observed in Fig. 1.6 that the material
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Figure 1.5: Range of deformation covered in simple tests in the invariants I1, I2 plane.

response tends towards an equilibrium state, which cannot be reached within laboratory

time scale. However, the stretch increased by less than 1% within the observed time

range. In a second time, a tensile specimen has been subjected to a load/unload se-

quence at different elongation rates λ̇ = 2.50× 10−3 s−1 to 1.25 s−1 in order to verify the

rate-dependence influence. No noticeable difference between stress-strain responses was

observed at the considered strain rate range. Consequently, the RTV3428 behavior can

be assumed independent of the rate of deformation for the observed ranges.

1.5.2 Uniaxial tension test

During the test, using an elongation rate of λ̇ = 1.60×10−2 s−1, the nominal stress tensor

P (First Piola–Kirchhoff stress tensor) is assumed to be homogeneous within the gauge

region as well as the deformation gradient tensor F. Since the current thickness is not

measured, the material is assumed to be incompressible, i.e., det (F) = 1 for convenience.

In the central zone, the deformation gradient, considering that the direction 1 is the

loading one, is given by:

F = λ(e1 ⊗E1) + λ−1/2 (e2 ⊗E2 + e3 ⊗E3) (1.3)

and the nominal stress tensor is:

P = P11(e1 ⊗E1) (1.4)

where (E1,E2,E3) and (e1, e2, e3) are the initial and deformed orthonormal basis, re-

spectively, here identical. Table 1.2 summarizes the analytical values of the different

deformation criteria, in terms of principal elongation.
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Figure 1.6: Time evolution of the normalized stretch for a creep test performed at constant
load 20N recorded after a monotonic tensile resulting in λi = 2.16.
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Figure 1.7: Cyclic loading-unloading tensile test with increasing maximum stress: 0.2, 0.4,
0.6 and 0.8MPa at λ̇ = 1.6× 10−2 s−1.

A cyclic loading test was realized, the results are presented in Fig. 1.7. Different

phenomena are highlighted, first a large Mullins effect appears by comparing the two
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first loading at each strain level, but with very few residual elongation. Moreover, a little

hysteresis after the first cycle (difference between loading and unloading during the second

cycle) is observed.

1.5.3 Plane strain tensile test

Also, the strain state during the test was supposed to be homogeneous, by assuming

the direction 1 is the loading one and direction 2 is the specimen width direction, the

deformation gradient tensor is expressed as:

F = λ (e1 ⊗E1) + (e2 ⊗E2) + λ−1 (e3 ⊗E3) (1.5)

where the stress tensor is

P = P11 (e1 ⊗E1) + P22 (e2 ⊗E2) (1.6)

Like for uniaxial extension, the analytical values of the deformation criteria are presented

in Table 1.2.

A cyclic planar loading test was realized, the results are presented in Fig. 1.8. Planar

tensile response, likewise uniaxial traction, presents the same phenomena. Here, the

residual stretch shows to be more evident. The maximum principal stretches experienced

by the planar specimens are smaller if compared with uniaxial tensile test specimens. This

limitation lies in the fact that the planar tensile specimens must be constrained in the

lateral direction without slipping.
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Figure 1.8: Cyclic loading-unloading planar tensile test. Maximum stress: 0.18, 0.28, and
0.38MPa at λ̇ = 2.60× 10−2 s−1.
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1.5.4 Equibiaxial tension state approached by the bulge test

Due to the axial-symmetry of the experimental configuration the equibiaxiality of the

stress and strain is obtained on the top the inflated sample. The deformation gradient

tensor in a local coordinate system is

F = λ (e1 ⊗E1 + e2 ⊗E2) + λ−2 (e3 ⊗E3) (1.7)

where λ is the elongation in the tangential direction of the specimen measured by SDIC.

Finally, with all assumptions above, the stress tensor is given by

P = P11 (e1 ⊗E1 + e2 ⊗E2) + P33 (e3 ⊗E3) . (1.8)

Similar to previous loading cases, the expressions of the deformation criteria are presented

in Table 1.2.

Once thickness dimension is much smaller than the other two planar dimensions (d0 ≫
e0), the stress is also assumed to be negligible along the thickness. Another consideration

comes from the fact that the curvature of the inflated sample was presumed to be the

same along all directions at the disk center. The component P11 can be calculated from

knowledge of curvature radius r, the tangential elongation λ and the pressure p recorded

during the test:

P11 = P22 =
pr

2e0
λ; P33 ≈ 0. (1.9)

The results for the central area are presented in Fig. 1.9 for a cyclic loading. The response

are qualitatively similar to uniaxial loadings with hysteresis and Mullins effect.
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Figure 1.9: Cyclic equibiaxial stress-strain behavior obtained using the tension bulge test.
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Table 1.2: Analytical expressions for the damage criteria in terms of stretch.

Criterium Uniaxial traction Planar traction Equibiaxial traction

I1 λ2 + 2
λ λ2 + 1

λ2 + 1 1
λ4 + 2λ2

I2
1
λ2 + 2λ λ2 + 1

λ2 + 1 λ4 + 2
λ2

√
B : B

√
λ4 + 2

λ2

√
λ4 + 1

λ4 + 1
√

1
λ8 + 2λ4

ε : ε 1
4

(
1
λ2 − 1

)2
+ 1

2 (λ− 1)
2 1

4

[(
1
λ2 − 1

)2
+
(
λ2 − 1

)2
+ 1
]

1
4

(
λ4 − 1

)2
+ 1

2

(
1
λ2 − 1

)2
√
e : e

√
1
4

(
1
λ2 − 1

)2
+ 1

2 (λ− 1)
2

√
1
4

[(
1
λ2 − 1

)2
+ (λ2 − 1)

2
+ 1
] √

1
4 (λ

4 − 1)
2
+ 1

2

(
1
λ2 − 1

)2
Note that B : B = (I1)

2 − 2I2 and ε : ε = e : e.

1.6 Discussion

On the one hand, using the experimental data, we propose to analyze the consequence

of the choice of a stress-softening measure. In agreement with the usual consideration

that the main part of the Mullins effect is represented by the difference between the first

and the second loading paths, the energy loss is evaluated by comparing the stored elastic

energy for the first and the second loadings. The evolution of the ratio of these two

quantities is plotted according to all the Mullins effect measure parameters of Table 1.1,

for the three loading cases: uniaxial and equibiaxial extensions and planar tension. The

results are presented in Fig. 1.10. It can be noticed that none of the parameters presents

a perfect correlation for all loading cases. Although, for the tested strain range, it seems

that the virgin energy (W0) and the first invariant (I1) parameters are the best choice.

The maximal principal stress (Pmax) can be acceptable for low strain levels. What clearly

appears is that the maximum principal elongation (λmax), usually used in Mullins effect

modelling, is not able to describe the different loading cases. All the other parameters

derived from the trace operator of a strain measure are not more efficient. All these

measures become less and less efficient at large deformation. It emphasizes the fact that

the Mullins effect should be described by W0 or I1 parameter. All this means that the

use of a non-efficient parameter implies the construction of the second loading modelling

on wrong bases. Whatever is the model, the evolution function used to describe the stress

softening will be fitted on a non-adequate parameter. Many Mullins effect modelling have

a large number of parameters, this permits to have a good fit, but if the wrong deformation

criterion is used, the physics of the phenomenon is lost.

On the other hand, some modelling hypotheses are discussed. A damage modelling

approach imposes to these ratios to be constant whatever is the maximum deformation

parameter. Fig. 1.11 presents the ratios between the different second loading curves (plot-

ted according to the principal elongation). The beginning of the curves varies very quickly,

but this is due to experimental errors which are more significative at low strain levels. It

clearly appears that no damage model can correctly represent the Mullins effect of a mate-
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Figure 1.10: Energy loss between the primary path and the second load for the different
mechanical loadings with respect to (a) the first strain invariant I1; (b) the second strain
invariant I2; (c) maximal principal stretch λmax; (d) maximal principal stress Pmax; (e)
strain energy density W0; (f) Left Cauchy-Green strain measure; (g) Piola strain measure;
(h) Euler-Almansi strain measure.
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Figure 1.11: Second loads ratio. Rows correspond, respectively, to uniaxial planar and
equibiaxial tensile tests. In the left column dot lines represent the primary path and
continuous lines are the second loads. The right column shows the ratio between second
loads.
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rial that has a similar behavior than the RTV3428 silicone. A choice must be done, but the

beginning of second loading curves and strain hardening cannot be described correctly at

the same time using these models. The proportionality between the second loading curves

prevents from describing large strain hardening, then it can only be applied to materials

that have a weak influence of Mullins effect. But this discards the imposition of pro-

portionality between second loading curves, like proposed by Beatty and Krishnaswamy

(2000) and Zuñiga and Beatty (2002). But their proposition is written thanks to a strain

measure that does not seem to be very efficient to characterize all loading cases. This was

improved by Zuñiga (2005) by changing the strain measure to an energy measure. An

interesting analysis and criticism of this model is proposed by Kazakeviciute-Makovska

(2007).

De Souza Neto et al. (1994) proposed a master second loading curve to describe Mullins

effect, the curve is magnified to join the stress-free state to the maximum deformation.

Fig. 1.12 presents a normalization of the strain-stress curve for the three simple tests

for the maximum strain and the normalized strain energy. It clearly appears that all

the curves are not superimposed, that means that the idea of a single master curve is

not adequate. The form of the second loading curve is varying a lot, according to the

maximum deformation. The strain hardening is very different and is not appearing at

the same in a second loading curve. This phenomenon is also more important for natural

rubber because of strain induced crystallization.

All these remarks emphasize the fact that an efficient Mullins effect modelling, by

an isotropic approach, must not use a formalism where the second loading curves are

proportional or homothetical. The modelling should be able to describe different forms

of strain-hardening according to the maximum previous deformation level. Moreover,

governing Mullins effect parameter should be built thanks to different loading cases; a

simple uniaxial test can drive to abnormal conclusion. We suggest to use the elastic

energy or the first strain invariant. The physical or pseudo-elastic approaches seem to

be the best way to tackle correctly Mullins effect evolution functions to be able to well

describe all second loading curves.



1.6. DISCUSSION 21

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Generalized Strain

c1

c2

c3

c4

G
en

er
a
li
ze

d
 S

tr
es

s

Generalized Strain
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Generalized Strain

c1

c2

c3

c4

G
en

er
a
li
ze

d
 S

tr
es

s

Generalized Energy

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

c1

c2

c3

c4

G
er

er
a
li
ze

d
 S

tr
es

s

Gereralized Strain

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

c1

c2

c3

c4

G
er

er
a
li
ze

d
 S

tr
es

s

Gereralized Energy

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

c1

c2

c3

c4

G
en

er
a
li
ze

d
 S

tr
es

s

Generalized Strain

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

c1

c2

c3

c4

G
en

er
a
li
ze

d
 S

tr
es

s

Generalized Energy

Figure 1.12: Normalized second stress loading curves with respect the maximum strain
(left column) and the normalized energy of deformation (right column). Rows correspond,
respectively, to uniaxial planar and equibiaxial tensile tests.



22 CHAPTER 1. ANALYSIS OF THE ISOTROPIC MODELS OF THE MULLINS EFFECT

1.7 Conclusion

In this paper, limitation of isotropic models of the Mullins effect have been tackled thanks

to experimental tests. In this way, filled silicone rubber has been characterized. The

reproducibility and accuracy of measurements were evaluated through several successive

tests. Results have shown that our protocol to manufacture the silicone specimens and our

experimental methodology work well and provide a precise experimental characterization

of softening phenomena. Uniaxial, equibiaxial and planar tensions have been realized, this

permits to compare first and second loading curves in different loading modes. Energy

losses are compared and analyzed. It clearly appears that the strain energy measure (W)

is the best choice and in a lesser the first strain invariant (I1).

The analysis of experimental data proved that proportionality between second loading

curves is not a good way to model the strain-stress curves. There are two main ways

to well describe the Mullins effect. The first one, by using a non-constant multiplicative

function on second loading curves or by using different non-proportional functions, this,

respectively, corresponds to double-network and physical approaches.

The governing parameters and description function forms have been analyzed under

isotropic assumption. The main extension of this study is to, now, take into account the

influence of the loading direction of the stress softening.
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2 Membrane curvatures and stress-strain full fields

of bulge tests from 3D-DIC measurements. The-

ory and validation on virtual and experimental

results.
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The bulge test is mostly used to analyze equibiaxial tensile stress state at the pole

of inflated isotropic membranes. Three-dimensional digital image correlation (3D-DIC)

technique allows the determination of three-dimensional surface displacements and strain

fields. In this paper, a method is proposed to determine also the membrane stress tensor

fields, independently of any constitutive equation. Stress-strain state is then known at

any surface point which enriches greatly experimental data deduced from bulge tests. Our

method consists, first in calculating from the 3D-DIC experimental data the membrane

curvature tensor at each surface point of the bulge specimen. Then, curvature tensor fields

are used to investigate axisymmetry of the test. Finally in the axisymmetric case, mem-

brane stress tensor fields are determined from meridional and circumferential curvatures

combined with the measurement of the inflating pressure. Our method is first validated for

virtual 3D-DIC data, obtained by numerical simulation of a bulge test using a hyperelastic

material model. Afterward, the method is applied to an experimental bulge test performed

using as material a silicone elastomer. The stress-strain fields which are obtained using the

proposed method are compared with results of the finite element simulation of this overall

bulge test using a neo-Hookean model fitted on uniaxial and equibiaxial tensile tests.
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2.1 Introduction

Modeling the deformation behaviour of materials requires first of all its experimental

characterization which in a classical manner is based on simple mechanical tests, e.g.,

uniaxial tension, equibiaxial tension, pure shear tests and others. These tests, under an

assumption of uniform strain and stress fields in the zone of interest, are the starting point

to propose constitutive equations aiming to describe various kinds of more or less ideal

material response, in order to approximate physical observation of real material response.

Modeling the deformation behavior of a given material requires then to identify material

parameters of the adopted constitutive equation. Considering the current development

and flexibility of full-field measurements techniques, tests under non-uniform conditions

can be conducted providing very rich experimental data. As pointed out in Avril et al.

(2008), performing experiments of increased complexity thus allows extracting more (and

more reliable) information from small numbers of tests. However, the developed methods

consist mainly in constitutive parameter identification, namely the finite element updating

method, the constitutive equation gap method, the virtual fields method, the equilibrium

gap method and the reciprocity gap method. All these identification techniques require to

adopt a specific constitutive equation (elasticity, plasticity, viscoplasticity, hyperelasticity,

etc.) to exploit full-field measurements.

In the past fifty years, the inflation of a plane circular membrane (or simply called

bulge test) has become a very useful technique to characterize material mechanical behav-

ior. The mechanical test of an initially flat membrane constrained between two circum-

ferential clamps subjected to a lateral hydrostatic pressure was used by many authors to

examine mechanical properties of different types of materials. It was the first experimental

method adopted by Treloar (1944) to describe vulcanized latex behavior and determine

their analytical model parameters. In plasticity field, Brown and Thompson (1949) used

the bulge test for five different alloys covering a wide range of stress-strain and failure

characteristics. Bulge tests were also used to investigate mechanical properties of thin

films, for determining residual stress, Young’s modulus and Poisson’s ratio (Tsakalakos,

1981; Mitchell et al., 2003). In the study of biological soft tissues, the bulge test is an

important tool, for example, for understanding the aneurysms multiaxial stress and strain

fields (Seshaiyer et al., 2001), for studying the mechanical properties of human tissues

(Miller, 1979; Kriewall et al., 1983) and for measuring the finite load-deformation behav-

ior of a sheet of living cells cultured on a mesoscopic freestanding elastomer membrane

(Selby and Shannon, 2007). More recently Grolleau et al. (2008) combined a Hopkinson

bar system with a conventional bulge test to study the biaxial testing of sheet materials

at hight strain rates.
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On the theoretical point of view, the bulge test was as well studied in detail. A seminal

work was proposed by Adkins and Rivlin (1952) that details the boundary value prob-

lem, in the field of nonlinear elasticity, associated with the Mooney isotropic membrane

inflation. Other important work has come from Hill (1950) introducing a theoretical anal-

ysis of plastic flow at the pole of a metal diaphragm, which is bulged plastically, based

on the Lévy-Mises stress-strain equations. In an analogous manner, Ross and Prager

(1954) showed that the use of Tresca’s yield condition and associated flow rule leads to a

simple theory where the basic equations can be integrated in closed form even for finite

deflections.

Bulge test was mostly conducted as an easy way to determine mechanical behavior

of isotropic materials subjected to equibiaxial tensile stress state. Indeed, due to the

axial symmetry of the problem and respecting the primary assertions of the membrane

theory, the equibiaxiality of the stress and strain is obtained at the top of the inflated

sample. Found over the pole neighborhood, where is supposed to exist a spherical cap,

the equibiaxial stress-strain state can be easily calculated from knowledge of the curvature

radius, tangential elongation and of the pressure recorded during the test. Such approach

was used for recent examples for rubber-like materials in Meunier et al. (2008) and Sasso

et al. (2008), and for NiTi superelastic sheets Grolleau et al. (2011). However, the current

shape of the total bulge is rarely spherical, as shown in Dudderar et al. (1977) using the

two-source holographic technique. Therefore, much more information is available from

axisymmetrical bulge test than stress and strain states at the pole if the pressure and

principal curvatures fields are measured. The membrane stress tensor can be determined

from these data using membrane theory and equilibrium equations without any explicit

constitutive equation. However, the accurate experimental measurement of curvatures is

not a simple task. Indeed, for this reason, a relation that describes the material behavior

was often used in the past. In this case, the principal curvatures are often written in terms

of the principal stretch ratios and replaced in the Lagrangian form of the equilibrium

equations. In a general manner, this procedure intends to reduce the problem to a first

order system by introducing new variables (Wineman, 1976; Yang and Feng, 1970). As a

consequence, there is also loss in generality in assuming an explicit form for the constitutive

relation which is chosen to represent the material. See for example the works Klingbeil and

Shield (1964) for hyperelastic potentials; Wineman (1978) and Feng (1992) for viscoelastic

behavior.

In a classical manner, the bulge specimen is supposed to be deformed axisymmetrically

and profiles are measured. In that case, meridional curvature is directly measured and cir-

cumferential curvature is deduced under axisymmetric assumption (Hsu et al., 1995). The

accuracy of this process heavily depends on the finite number of experimental measure-

ments points, and information data is restricted to a meridional path only, i.e., this manner

to compute the principal curvatures is restricted to axisymmetric problems. Regardless, a

numerical procedure must be employed to solve the coupled nonlinear differential problem.

In this context, the present work intends to provide an useful method to obtain the

membrane stress and strain fields during the bulge test using the three-dimensional digital

image correlation (3D-DIC) technique. The 3D-DIC is able to capture three-dimensional

surface geometry and displacements of the deformed surface. This paper explains how
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these kinematical fields permit to evaluate in each point of the membrane the strain and

curvatures fields, and the stress field in the axisymmetrical hypothesis. Section 2.2 starts

with a brief description of 3D-DIC technique, where the bases of contour and strain mea-

sure principles are outlined. In the same section, the theoretical framework for evaluation

of the first and second fundamentals forms of surface and relations between principal

curvatures and membrane stress are emphasized. Thus, a method to determine the curva-

ture fields from 3D-DIC data is presented. Then we show that curvature fields combined

with the measurements of the inflation pressure allow calculating the stress fields for an

axisymmetric bulge. In Section 2.3, a finite element calculation is realized on a Mooney

hyperelastic membrane to emulate experimental data, i.e., generate a virtual 3D-DIC in-

formation. These data permit to validate the curvature calculation method and estimate

errors in stress determination. In Section 2.4 the method is applied to real experimental

data. The experimental results obtained in the bulge test of a silicone rubber-like material

are presented. All precautions concerning the experimental setup are emphasized. The

tridimensional correlation process is not perfect in view of missing and outlying values

that can occasionally occur, a strategy is invoked to treat these occurrences. Finally, the

experimental data fields are compared to a finite element model carried out using a neo-

Hookean hyperelastic law fitted on uniaxial and equibiaxial tensile tests. This permits to

highlight the advantages of the proposed method compared to usual methods of analysis

of bulge test.

2.2 Theoretical framework

2.2.1 A brief outline of 3D-DIC

In the 3D-DIC technique, random gray-value dot patterns on specimen surfaces are ob-

served by two cameras in a stereoscopic setup. Also called stereo digital image correlation

(SDIC), the 3D-DIC is based on both stereo-vision technique and digital image correlation

(DIC). A comprehensive description of metrological aspects of 3D-DIC technique can be

found in the literature, e.g. Luo et al. (1993), Sutton (2008) and Sutton et al. (2009).

For references on applications of stereo-vision and 3D-DIC to experimental mechanics, see

Orteu (2009).

The stereo-vision technique permits to recover the three-dimensional information of a

scene from two different view points. Considering a physical pointM of coordinates X i in

a Cartesian reference frame to be measured. Forward, Latin indices represent the values

1, 2, 3 and, the Greek ones the values 1, 2. The stereo-projections of the point M(Xi) on

the images planes of two cameras C1 and C2 are given by MC1(X
α
S1), MC2(X

α
S2), where

Xα
S are the camera sensor coordinate system. Every deviation from the straightness of

the projection can be related to the presence of radial and tangential distortions. Fig. 2.1

illustrates the epipolar geometry, i.e., the geometry of stereo vision, with pinhole C, focal

length f , and image plane center P , imaging a general object pointM . It is convenient to

define a set of coordinate systems to represent the imaging process. The first coordinate

system is the global coordinate system (GCS), with axes (X1, X2, X3). The second

coordinate system typically defined is the camera coordinate system (CCS) located at
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the pinhole C. The third set of axes defines the sensor coordinate system (SCS) with

X1
S , X

2
S in terms of pixels, where a pixel defines positions/sensor locations.

The 3D-DIC uses a DIC algorithm to determine point correspondences between two

images of a specimen acquired at the same time from two bounded cameras. The digitized

images are compared to match subsets - so called facets - from one image to another. The

facet is a square area, with size fsize pixels, around the evaluation grid point which is

used from the correlation algorithm in order to identify the corresponding area in another

image. The correlation scores are computed by measuring the similarity of a fixed facet

in the first image to a shifting subset window in the second one. With knowledge of the

imaging parameters for each camera and the orientations of the cameras with respect to

each other by a calibration procedure, the position of each object point in three dimensions

is calculated. The minimal facet size (fsize) is limited by the size and roughness of the

stochastic pattern on the object surface. Each facet must contain a characteristic part of

the pattern with good contrast features.

As a result, the 3D-DIC provides a set of physical points M in terms of Cartesian co-

ordinates X i in a global reference system, arbitrarily defined during the calibration phase.

The calibration, in the commercial system used in this work, is done by taking a series of

exposures of a calibration target with both cameras simultaneously, i.e., both cameras are

calibrated as a stereo rig. The calibration target is a chess pattern with known geometry

and this target is put into different spatial orientation with respect to the cameras sensors.

The software detects the corners of the squares. Additional circular markers placed on the

target surface define the center and the orientation of the calibration target. The eval-

uation algorithm calculates the intrinsic parameters (focal length f , image plane center

P , radial and tangential distortion parameters) for each camera. Intrinsic parameters are

influenced by focal lens, focal distance and aperture and they are considered as intrinsic

since the cameras remain in fixed positions relative to each other during the experiment.

The evaluation algorithm calculates as well the extrinsic parameters (translation vector

and the rotation matrix between the GCS and the SCS) which in turn are influenced by

the intrinsic parameters and the positions of the cameras. Finally, the uncertainties of

the calibration parameters, resulting from the deviations of the detected markers from

the model positions are calculated. Typically a total number of ten images are sufficient

to calculate all calibration parameters accurately. A comprehensive description of the

3D-DIC calibration method with the mathematical development can be found in Sutton

(2008).

Note that the spatial resolution (Sres) of the discretized surface depends essentially

on camera sensor resolution (Cres) and on the choice of the evaluation grid. The grid

spacing (Gs) is the distance between the grid points in pixel and therefore set spatial

resolution or the distance between the data points on the object. Thus, grid spacing

limits the spatial resolution, as each grid point represents one single data point of the

result. Finally data output is arranged in a matrix representation in the form Xi(u, v)

where the integer values u, v ∈ [1, ⌊Cres/Gs⌉] are respectively lines and columns indices of

the matrix representation for each coordinate (Xi). See the scheme in Fig. 2.1.

Once the 3D contour has been determined, the next step in digital 3D correlation

is the determination of the three-dimensional deformation of the object surface. This
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Figure 2.1: Representation of the epipolar geometry and the coordinates output format.

process is carried out by correlation of the images, taken by both cameras in the deformed

state, with their original reference images. To evaluate the 3D displacement field, 3D-

DIC determines point correspondences between the stereo pairs acquired before and after

deformation. The correlation algorithm tracks the observed gray value patterns for each

camera and transforms corresponding facet positions in both cameras into 3D coordinates

for each deformation step, resulting in a track of each surface facet in 3D space and over

time. With the known position vectors of each surface point and the reference contour,

the strains can be determined by calculating the gradient of the deformation or by the

distortion of the facets, i.e., they can be derived either directly by the differentiation of

the displacements of adjacent surface points or measured pointwise by the analysis of the

distortion of each local facet, which was used for correlation (Sutton, 2008; Sutton et al.,

2009).

2.2.2 Errors sources on the 3D-DIC

The evaluation of a 3D correlation measurement results in 3D coordinates, displacements

and in-plane strains on the specimen surface. The corresponding data uncertainties origi-

nate from different sources, which can be divided into three categories Becker et al. (2006):

statistical correlation errors, systematical correlation errors and 3D reconstruction errors.

Statistical correlation errors are principally related to the limited number of pixels and

corresponding gray values in each facet, and finally by the fact that the facet position has

to be determined with subpixel accuracy. Additional potential error sources are statisti-

cal noise of the gray values, different illumination conditions for the two cameras, image

contrast and size of the speckle pattern on the specimen surface. Systematical correlation
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errors are introduced by subpixel effects. They might occur if the facet transformation

model used is not appropriate to describe the complexity of the real transformation, e.g.,

in a curved specimen surface or for significant lens distortions (see reference Schreier and

Sutton (2002) for details). Systematical errors build a principal limitation for the reso-

lution of the resulting data Becker et al. (2006). Finally, uncertainties of the calibration

parameters lead to errors, when reconstructing the 3D coordinates. Calibration errors

appear in a systematical manner as a function of the facet positions in the camera frames,

causing local distortions of the reconstructed 3D space. However, results from multiple

experiments performed in (Sutton, 2008) indicate a typical accuracy for the displacement

field on curved or planar specimens, on the order of ±0.01 pixels for the in-plane com-

ponents and D/50000 in the out-of-plane component, where D is the distance from the

object to the camera, for typical stereo-camera arrangements. The point-to-point accuracy

of ±10−4 for the in-plane surface strains is achievable even when the object is subjected

to large rigid-body rotations and arbitrary amounts of rigid-body translations since these

motions do not corrupt the strain measurements.

2.2.3 Curvature evaluation from coordinates fields measured by 3D-DIC

Using the 3D-DIC, the reference surface Ω0 of the object in question is discretized by a

regular grid that represents the surface curvilinear coordinates Θα. These coordinates are

obtained directly from the grid placed by 3D-DIC using the grid indexes Θ1 = u and Θ2 =

v where u and v are respectively lines and columns indices of the matrix representation

Xi(u, v) . This grid maps any discrete pointM0 of the undeformed body, associating a set

of curvilinear coordinates, so called Θα–curves. Since the coordinates Θα are convective,

these curves are subjected to the same deformation as the body, and are transformed

at time t in a new set of curves that represents the deformed state Ωt, as presented in

Fig. 2.2. In the same figure, an arbitrary surface in three-dimensional Euclidean space E3

is considered. The mapping of Ω0 into Ωt is such that the correspondence of the points

M0 and M is assumed one to one. The reference and deformed surfaces are defined by

S = S(Θα) and s = s(Θα, t), respectively, with S and s ∈ E3, where Θα are the surface

curvilinear coordinates. In the following, s is supposed to be single-valued and sufficiently

differentiable with respect to both arguments Θα as many times as required.

In order to handle with surfaces, two important pieces of data associated with any

surface are recalled: the first and second fundamental forms of surface. Let M be a point

on the surface whose coordinates are Θα and Q be a neighboring point of the surface with

coordinates Θα + dΘα. Defining ds as the elementary distance between M and Q, the

first fundamental form can be expressed by the quadratic form

(ds)2 = gαβ dΘ
αdΘβ . (2.1)

where the elements gαβ = gα · gβ are the covariant components of the surface metric

tensor g = gαβ g
α ⊗ gβ . This symmetric and positive-definite tensor can be expressed

on covariant, gα, or contravariant, g
α, basis where gβ · gα = δαβ and δαβ is the Kronecker

symbol. The first fundamental form is an invariant of surface and encodes the intrinsic

data about the surface without referring back to the ambient space where the surface lies.
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Figure 2.2: The surface basic geometric variable definition: ei are the unit base vectors
related with the orthogonal Cartesian coordinates X i and xi; Gi and gi are the covariant
basis related with M0 and M respectively.

The second fundamental form, on the other hand, is a surface invariant that encodes

the information about how the surface is curved in the embedding space. From the analysis

of the differential geometry, it follows that the covariant components of surface curvature

tensor b = bαβ g
α ⊗ gβ , associated with the second fundamental, are given by

bαβ =
∂gα
∂Θβ

· g3 (2.2)

where

g3 =
g1 × g2

∥g1 × g2∥
= g3. (2.3)

The interest is focused in the two principal curvatures κn at a given point M in the

membrane surface. Considering now the eigenvalue problem in each point M

(b− κng)v = 0 (2.4)

where the surface shape operator is given by bg−1. Since the shape operator is self-adjoint

on the tangent plane at the surface in M , the corresponding eigenvalues κI , κII are called

the principal curvatures atM , and vI and vII are the principal curvature directions atM .

Recalling the definition of the Gaussian-curvature, K, and mean-curvature, H, it follows

that

K = det(bg−1) = κIκII (2.5)

and

H = −1

2
trace(bg−1) =

1

2
(κI + κII). (2.6)
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As consequence, the maximal and minimal curvatures resulting from the quadratic form

κ2 − 2Hκ−K = 0 associated with the surface shape operator are given by

κI , κII = H±
√

H2 −K. (2.7)

For comprehensive exposition of other definitions and concepts on differential geometry

with applications, see for example Carmo (1976), Ciarlet (2005) and Toponogov (2006).

Finally, a MatLab routine (see AppendixA) was developed to perform a two-dimensional

numerical differentiation scheme over the Θα coordinates for each time t. Thus, the terms

of Eqs. (2.1) to (2.7) are computed and principal curvatures can be determined at each

membrane point. Given that 3D-DIC is able to capture any 3D contour and the curvature

tensor is calculated for each surface point, the presented scheme of curvature calculation

is not restricted to shape characteristics like axisymmetry.

2.2.4 Meridional and circumferential stress determination

Considering now the axisymmetric bulge test, the equilibrium equations can also be de-

rived directly by balancing the forces of an element of the deformed shape. Employing

the primary assertions of the membrane theory, every material point of the membrane in

both reference and deformed configuration is in a plane stress state (Green and Adkins,

1970). In Fig. 2.3(a) the initially flat thin planar circular sheet of radius a and with an

uniform thickness h0 is presented. For convenience, to describe the strain field, cylindrical

coordinates (R,Φ, Z = 0) define the position of a material particle M0 in the middle sur-

face of the stress-free membrane in the reference configuration. Let the pressure p acts in

the bottom surface of specimen, the membrane experiences a deformation. The point M0

moves to the position M , and the deformed configuration is defined by the coordinates

r(R,Φ), ϕ(R,Φ) and z(R,Φ). Note that in either configuration, the profile of the mem-

brane has no circumferential dependence. Under the assumption of material isotropy, the

principal directions of both stretch and stress at each material particle are known ab initio

to be the meridional and circumferential directions to the membrane surface. From this

point forward, these directions will be denoted by the subscripts m and c respectively, as

shown in Fig. 2.3(b).

Assuming quasistatic motion, the equations of equilibrium, at point M , for a thin

axisymmetric isotropic membrane, as adopted by Hill (1950), can be expressed as

σm =
p

2h κc
(2.8)

σc =
p

2h κc

(
2− κm

κc

)
, (2.9)

where p is the time-dependent normal pressure acting uniformly (dp/dR = 0) and h the

current thickness. The stress components are expressed in Eqs. (3.2) and (3.3) directly in

terms of pressure and the current bulge geometry. As mentioned in Wineman (1976) and

Humphrey (1998) a remarkable consequence of membrane theory is that it admits equilib-

rium solutions without explicitly requiring a constitutive equation, since the equilibrium

equations are derived directly by balancing forces of an element of the deformed shape. As

consequence they are valid for all classes of in-plane isotropic materials. As pointed out by
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Figure 2.3: (a) The axisymmetric bulge test scheme. (b) A deformed differential element
and principal directions of stresses.

Hsu et al. (1995), however, principal curvatures κm, κc can be experimentally computed,

thus Eqs. (3.2) and (3.3) are very useful for exploiting axisymmetric bulge test data.

2.3 Benchmark inflation test using a Mooney membrane

2.3.1 Experimental data emulation

In order to demonstrate some quantitative predictions of the presented method to obtain

the membrane stress field presented in Sec. 2.2 the finite element method (FEM) was used

to emulate experimental data similar to that obtained by 3D-DIC. The aim here is to use

a regular finite element mesh that represents in the same way the grid used by 3D-DIC

to describe the surface geometry. Therefore, these virtual data are free from the usual

experimental problems of the real 3D-DIC data, like missing and outlying values.

Using the Mooney hyperelastic model Mooney (1940) the FEM outputs nodal coordi-

nates and displacements are used as data. Thus, an uniform mesh with an element edge

length of 2mm, was used to discretize a square zone inscribed into the circular geometry

to obtain a good spatial resolution for the curvatures calculation. The Mooney model was

arbitrarily chosen and any other constitutive model could have been used as well. For

details of Mooney model and basic equations on large deformations see Meunier et al.

(2008).

2.3.2 The finite element model description

Numerical simulations were performed using the finite element code ABAQUS. Assuming

an incompressible isotropic hyperelastic material behavior, the Mooney (1940) strain-
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Figure 2.4: Numerical inflation of Mooney behavior membrane. (a) z direction displace-
ments (in mm) for pressure loads of 7.5 kPa and 15 kPa. Mesh are represented only in
reference configuration and the two pressure steps are superposed; (b) Principal in-plane
stress (in MPa) are plotted onto deformed shape and only the regular square zone is
represented. Solid circles represent the meridional path.

energy function WM can be written as

WM (I1, I2) = C10 (I1 − 3) + C01 (I2 − 3) (2.10)

where C10 and C01 are material parameters. I1 and I2 are the first and second strain

invariants of the right Cauchy-Green deformation tensor C (C = FTF, where F is the

deformation gradient tensor). Due to its mathematical simplicity as well as its prediction

accuracy in the range of moderately-large strains, this hyperelastic model have been widely

employed in the description of the behavior of rubber-like materials.

The model geometry consists in a thin circular plate, of initial radius R(a) = 90mm

with h0 = 2mm of thickness. The circular plate is simply supported and subjected to an

uniform inflating pressure acting perpendicular to the current configuration. The Mooney

hyperelastic model parameters are those given in Meunier et al. (2008), where C10 =

0.14MPa and C01 = 0.024MPa for the RTV141 silicone rubber cured at 70 ◦C during

150min. The finite deformation problem was modeled with the S4R shell elements (4-node

doubly curved general-purpose shell, reduced integration with hourglass control, finite

membrane strains) with eleven Gauss integration points through the thickness. Fig. 2.4(a)

depicts a sliced sequence of deformed configurations for two pressure loads of 7.5 kPa and

15 kPa, respectively.

2.3.3 Curvature Method: application to the virtual data

Using the FEM deformed nodal coordinates output, the principal curvatures κm, κc are

computed over all surface, as described in Sec. 2.2.3, by means of the MatLab implemented

post-treatment routine, presented in AppendixA. To illustrate the curvature evaluation,

the isovalues are presented in Fig. 2.5 for p = 15 kPa. This figure shows clearly the bulge

axisymmetry, as curvatures iso-curves are perfectly concentric. Stress components can

thus be evaluated from Eqs. (3.2) and (3.3). Further, since boundary conditions are
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Figure 2.5: Curvatures of Mooney behavior membrane at p = 15 kPa. (a) Meridional and
(b) circumferential isovalues evaluated using the FEM deformed nodal coordinates output
as data.

perfectly balanced over the circumferential perimeter at R(a), a perfectly spherical cap

is obtained, i.e., surrounding the pole a cap of umbilical points κm=κc ̸= 0 can be easily

identified. At such points, both principal curvatures are equal every tangent vector is a

principal direction.

The output fields principal stretches (λm,λc), principal curvatures (κm,κc) and prin-

cipal stresses (σm,σc) are plotted for a single meridional path in Fig. 2.6(a), (b) and (c),

respectively. Afterward, the principal stresses (σm,σc) computed using Eqs. (3.2) and (3.3)

were compared with the Mooney membrane FEM outputs. It can be seen that the results

fit very well in Fig. 2.6(c). The relative differences between both stress components using

the presented method and FEM are plotted in Fig. 2.6(d) for 7.5 kPa and 15 kPa. Errors

tend to be less than 2% for both stress directions for maximum pressure level of 15 kPa.

On the other hand, errors increase for lower pressure levels. This notice seems to be natu-

ral knowing that principal curvatures vanish when the surface becomes flat. However, the

principal explanation in disagreement of the stress results comes from the fact that, no

matter how thin, all structures are three-dimensional and possess some bending stiffness.

It is important bearing in mind that the membrane theory is an approximation. Fig. 2.7

shows the variation of FEM principal stresses over the membrane thickness h in the pole

(R = 0) and in the border (R = 0.95a), for an initial ratio radius/thickness of a/h = 45.

Note that, bending effects are more pronounced nearest to the border (R → a) in both

configurations. This fact justifies the form of curves presented in Fig. 2.6(d). The other

important observation from Fig. 2.7 is that the bending influence can increase for low

pressure levels. A similar result was found by Kyriacou et al. (1997) for an inverse finite

element characterization using a bulge test sample with a/h ≈ 30 stretched at the pole

of about 1.3. Authors notice that the error in the estimated parameter increased with an

decrease in the pressure at which the data were generated. Thus, depending of sample

material and geometry, the amount of bending could be non-negligible for small strain
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Figure 2.6: Two deformed configurations 7.5 kPa and 15 kPa pressure levels for the in-
compressible Mooney (C10 = 0.14MPa and C01 = 0.024MPa) membrane. (a) Principal
stretches (λm,λc); (b) Principal curvatures (κm,κc); (c) Cauchy stress (σm,σc) confronted
with the finite element results (FEM); (d) Errors with respect to principal stresses in both
deformed configurations.

levels.

A last important remark arises from the fact that curvatures estimated for real 3D-

DIC data are very sensitive to experimental noise since estimates of partial derivatives of

second order are necessary. Gaussian noise was then introduced into the Xi coordinates of

FEM data results to simulate potential experimental errors. Applying our method to these

noisy data leads to very poor estimation of both circumferential and meridional stresses, as

shown in Fig. 2.8. Smoothing can be used to reduce experimental additive noise and small-

scale information while keeping the most important imprints of data set. For these cases, a
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Figure 2.7: Bending stiffness effects in both deformed configurations (7.5 kPa and
15 kPa pressure levels) for the numerical benchmark. Principal stresses variation (i.e.
σm/σm(mean) analogous for σc) over the element thickness (h) at the sample pole (R(0) =
0mm) and border (R(a) = 90mm).

discretized smoothing spline algorithm proposed by Garcia (2010) was implemented. The

weighted robust version of the algorithm was used to deal with occurrences of missing and

outlying values of gridded data. The perturbed data were input into the post-treatment

routines. Curvatures and stresses were recalculated and Fig. 2.8 presents the results.

Smoothing allows obtaining estimated values of the stresses from the noisy data very

close to those of the original FEM data.

This numerical study validates the developed post-treatment routines, as the stress

results are quite similar to FEM results by considering the hypotheses presented.

2.4 Application of the method to experimental bulge test of a

silicone elastomer

2.4.1 Experimental bulge test

The objective of this section is to experimentally validate the proposed method to deter-

mine curvatures and stresses on bulge test of a silicone elastomer. Experimental difficulties

are pointed out and results are confronted with a finite element model. The chosen sili-

cone rubber is an unfilled formulation produced by Rhodia (RTV 141). Specimens were

produced using the processing described in Meunier et al. (2008), following the processing

route: (i) mixing the two liquid components, i.e., the uncured silicone and the curing

agent, with a 10/1 ratio, (ii) putting the uncured mixture under vacuum for 30 min in or-

der to eliminate undesirable entrapped bubbles, (iii) injecting the liquid mixture in sheet

mold and (iv) putting mold inside an oven at 70 oC for 4 hours to cure the silicone.

Comparing with Meunier et al. (2008), the cure was augmented in order to increase the
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Figure 2.8: Principal stress (σm,σc) results. Original finite element output (FEM), calcu-
lated using the artificially noised data (noised) and calculated using the smoothed data
(smoothed).

tear resistance of the material. This permits to largely swell the membranes. Using the

RTV141 silicone, experimental bulge tests were carried out to determine a non-uniform

stress strain state over the membrane surface.

Bulge test setup

The disk specimen dimensions are the same as in Sec. 2.3 (initial radius R(a) = 90mm with

h0 = 2mm of thickness) constrained between two clamping flanges. In this test machine,

the principle consists of a pressurized air line connected to the bottom circumferential

clamp. Given the small pressures used during the experiments, a regulator is required to

reduce the line pressure to a maximum of 30 kPa. To decrease the pressure, an unloading

valve is opened to create a leak. The internal pressure is measured by a Foxboro 0 −
500mbar pressure sensor. A picture of the experimental setup is shown in Fig. 2.9(a).

3D-DIC setup and experimental difficulties

The out-of-plane displacement measurement is needed, therefore the Dantec Q-400 com-

mercial 3D-DIC system was used to acquire and correlate the full-field bubble shape

information. Since a large out-plane displacement is experienced by the silicone sample, a

good focal distance is absolutely necessary. The biplane CCD cameras, using 20mm focal

length lenses opened at f/16, are focused in manner to maximize the acquired area to

the pole up to the border. However, it is important that the object surface shows enough

structure to allow the algorithms to correlate identical points from both cameras. Note

that, using only two cameras, the information near to the border will be lost if the mem-

brane experiences large displacements creating a self-shadow effect. Thus a Rmax defines
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the limit of the correlation zone, i.e., the maximum distance from the membrane center

which is seen by the two cameras. A third camera should be added in this case to be able

to correlate along all a meridional direction, see Orteu et al. (2010) for a multiple-camera

instrumentation example.

A high spatial resolution is needed to permit an accurate measurement of curvatures.

The spatial resolution achieved in practice depends on a number of factors, including

but not limited to camera resolution, lens optical quality, and marker size and quality.

Facet size limits the spatial resolution as well, as the result of each evaluation grid point

follows from the image correlation of the extended facet region. Thus increasing facet size

causes smoothing of the results and decreasing so the spatial resolution. In order to have

independent data points the facets of neighboring data points should not overlap. The

full camera resolution (Cres) is used (2048 pixels × 2048 pixels) with an evaluation grid

size Gs = 12pixels and a facet size fsize = 21pixels, resulting in a spatial resolution of

Sr = 1.45mm over the membrane surface.

Fig. 2.9(b) presents an example of reconstructed surface. Note that in some small

regions on surface, missing data occur due to some correlation abnormalities, normally

associated with locally irregular pattern.

Figure 2.9: (a) The bulge test experimental setup using 3D-DIC technique; (b) Recon-
structed RTV141 membrane surface.

Test Results

Cyclic inflations were performed, applying p = 30 kPa several times, to pre-stretch the

specimen in order to accommodate the material. This is due to the fact that silicone

rubber can exhibit considerable stress softening phenomenon for different loading cases

(Machado et al., 2010). After the recovery time of 1 h and starting from an initially

flat surface, inflations were performed from 8 kPa to a maximum pressure of 27.1 kPa.

These inflations yielded principal stretches at the pole of about 1.10 and 1.36 respectively.

Fig. 2.10 shows the principal curvature κm plotted onto 3D-DIC reconstructed surface.
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Figure 2.10: Principal curvature κm plotted onto 3D-DIC reconstructed surface. Solid
line represents the meridional path used in Fig. 2.11

This bulge test can be considered as axisymmetric. Plots of the deformed membrane, over

the meridional path, for each of the two inflation states can be found in Fig. 2.11. The

values of z direction displacements (in mm) and principal stretches (λm,λc) were obtained

direct from 3D-DIC system. Principal curvatures (κm,κc) and principal stresses (σm,σc)

were computed using Eqs. (2.7), (3.2) and (3.3) respectively.

The experimental fields are plotted in Fig. 2.11. For each of the two inflation states

all material points, save the pole (R(0) = 0mm) and the clamped boundary (R(a) =

90mm), experience both axial and meridional displacements as a result of their respective

finite deformations. The plots of the principal stretches (λm,λc) in Fig. 2.11(c) show that

each inflation state involves a heterogeneous strain state, i.e., equibiaxial stretch at the

pole, planar stretching at R(a). As expected, the circumferential stretch λc tends to one

towards the clamped boundary, i.e., when R→ R(a). With respect to principal curvature

distributions (κm, κc), note that equibiaxial membrane deformations near the membrane

pole are associated with an approximately spherical geometry, i.e., κm ≈ κc. The non

perfect equality may be explained by the fact that the umbilical point may not lie exactly

on the z direction axis. This subtile difference can increase for high deformed states.

Stress state can be assumed to be approximately balanced-biaxial at the pole, following

by the circumferential stress σc which steadily decreases when R→ R(a).

2.4.2 Material characterization and numerical simulation

In the previous section, stress and strain fields have been obtained by the presented method

which does not require any constitutive equation and parameter determination. The aim
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Figure 2.11: Distributions of experimental (Exp) and numerical (FEM) fields: (a) z direc-
tion displacements; (b) principal curvatures (κm,κc); (c) principal stretches (λm,λc); (d)
principal stresses (σm,σc); corresponding to 8 kPa and 21.7 kPa inflation states.

of this section is to compare these results with an usual analysis of such as bulge test.

This analysis is done by means of a numerical simulation implying a modeling of the

mechanical behavior of the unfilled silicone rubber RTV141. It is known that different

modes of deformation are required to obtain the constitutive equation and the parameters

that define the stress-strain relationship accurately. The tests used in this investigation are

cyclic uniaxial and equibiaxial tension, completely independent, i.e., they were performed

in parallel from the bulge test described in the last section.

Uniaxial tensile test and equibiaxial test are performed at room temperature at λ̇ =

1.25 × 10−2 s−1. The material presents a weak hysteresis and a very little strain rate

dependency (Meunier et al., 2008). Nevertheless, a stress softening phenomenon, called
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Mullins effect (Mullins, 1969) appears, contrary to Meunier et al. (2008) using a smaller

curing time. Mullins effect strongly depends on the maximum previous deformation. To

measure the influence of the previous maximum deformation, increasing cyclic uniaxial

tests were performed at λ = 1.75 and λ = 1.95. Fig. 2.12(a) highlights that for moderate

deformations λ < 1.40, the second loading curves are nearly the same whatever is the

previous maximum strain. This means that increasing the maximum strain has only

a slight effect on the behavior at moderate deformations. Therefore, for the range of

deformation, a hyperelastic constitutive equation is sufficiently accurate to model the

mechanical behavior. The neo-Hookean constitutive equation (Treloar, 1943) is chosen to

describe mild deformations:

WN (I1) = C10 (I1 − 3) . (2.11)

The material parameter is fitted on second loading curves for uniaxial and equibiaxial

tests, C10 = 0.335MPa is obtained. The results are presented in Fig. 2.12(a) and (b).

This shows that the model predicts satisfactorily the two loading stress for λ < 1.40.

Figure 2.12: Experimental data and the hyperelastic fitting using the neo-Hookean hy-
perelastic model: (a) Uniaxial and (b) equibiaxial tensile tests at λ̇ = 1.25× 10−2 s−1.

2.4.3 Experimental and numerical comparison of bulge test results

Results of FEM using the neo-Hookean model are superposed with the experimental fields

(displacement, principal curvatures, principal stretches and principal stresses) in Fig. 2.11.

All numerical predictions clearly follow the trends calculated from the presented method

to obtain the principal curvatures applied to the experimental data. For the z displace-

ment field (Fig. 2.11(a)) a pronounced difference, for the lower pressure value, is observed.

Consequently the curvatures evaluation (Fig. 2.11(b)) for this same load state is obviously

affected. Nevertheless, errors in curvatures determination decreased with an increase in

the strain level as observed in the benchmark of Section 2.3. Considering the principal
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stresses plots, a good agreement is observed in spite of the hyperelastic constitutive equa-

tion simplicity.

It is important to keep in mind the simplicity of the neo-Hookean model, the simple

procedure used for material parameter identification and the precaution taken to accom-

modate the material before testing. An interesting characterization method for rubber

is proposed in Guélon et al. (2009), performing only one heterogeneous mechanical test,

measuring the displacement and strain fields using DIC and applying an inverse method.

They obtain a large set of heterogenous states, represented in the I1× I2 invariants plane,

between uniaxial tensile and planar shear tensile paths. Fig. 2.13 illustrates the strain

states, in the I1 × I2 invariants plane, for the classical three homogeneous tests used in

material parameter identification. In the same figure, the gray zone represents all the

heterogenous states covered in the bulge test, with the advantage of knowledge about the

stress field. For the presented material test, the distribution of loading cases in this zone

are limited to Rmax achieved during the correlation step. This zone is represented by a

circular hatch pattern in Fig. 2.13. As aforementioned, the Rmax depends of the mem-

brane displacements levels and camera dispositions in order to acquire the information

over the border, i.e., the zone dominated by planar shear tensile state.

Figure 2.13: Loading case in I1 × I2 plane. The gray zone represents all heterogeneous
deformations states covered by the bulge test. The Bulge(Rmax) curve refers to the het-
erogeneous path at Rmax point. The circular hatch pattern represents the distribution of
loading cases for the presented material test.

2.5 Conclusion

The aim of the present work was to propose a method which enriches greatly the anal-

ysis of usual bulge tests by using the 3D-DIC technique. Firstly, this paper presented a
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general method to determine surface curvature tensors from 3D-DIC data. This requires

no assumptions regarding axisymmetry or other shape characteristics of the membrane

surface. Secondly, the determination of the curvature tensor fields allowed checking the

axisymmetry of the bulge test, which has to be obtained for planar-isotropic material and

perfect boundary conditions. Once this axisymmetry was proved, the proposed method

permitted to determine the stress-strain fields associated with the membrane inflation

problem without any constitutive equation. The method was applied in this paper both

on virtual data generated by numerically simulating the bulge test and on real data of one

experiment performed on a silicon elastomer. In this last case, experimental difficulties

were pointed out, particularly the difficulty to obtain the information near to the border

for the chosen material. These two examples showed that bulge test can be used as one

very rich heterogeneous mechanical test which allows obtaining valuable information for

testing different types of materials for a wide potential range of stress-strain states ranging

from equibiaxial to planar tensile stress state.
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3 Induced anisotropy by the Mullins effect in filled

silicone rubber
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This study is concerned with the experimental characterization of anisotropy induced

by the Mullins effect in a particle-reinforced silicone rubber. Experimental data concerning

the influence of type and direction of initial loading on the subsequent stress-softening are

quite scarce. In this scope, a set of experimental tests were carried out on a filled silicone

rubber. Uniaxial tensile test and bulge test were used to precondition the samples, i.e.,

to induce some primary stress-softening. In both cases, subsequent uniaxial tensile tests

are conducted on preconditioned specimens. The first set of experiments consists of a

homogeneous tensile path followed by tensile along different directions. It appears that

the stress softening varies from a maximum in the same direction load to a minimum in

the orthogonal direction, with respect to the first tensile load direction. Next, the bulge

test is proposed as an original way to yield very different biaxial strain-histories for first

loading path. The fact that the biaxiality ratio varies from the pole until the bulge border,

permits to analyze second tensile load curves in a material that experienced a more complex

first load path. These experimental data allow to discuss the most appropriate criteria to

describe the strain-induced anisotropy phenomenon.
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3.1 Introduction

Rubber-like materials exhibit a significant stress softening after a first loading. This

phenomenon called Mullins effect has been observed in different paths of deformation

during the last six decades. A detailed review for experimental references in different

deformations states like uniaxial tension, uniaxial compression, hydrostatic tension, simple

shear and equibiaxial tension is given in Diani et al. (2009).

In a first approach, the Mullins effect was analyzed under the isotropy hypothesis,

which leads to numerous models in terms of pseudo elasticity (Ogden and Roxburgh,

1999; Dorfmann and Ogden, 2004), damage modeling (Chagnon et al., 2004) and macro-

molecular approaches (Govindjee and Simo, 1991; Arruda and Boyce, 1993; Marckmann

et al., 2002). More references can be found in Diani et al. (2009). Nevertheless, this

softening phenomenon is known to exhibit very strong directional dependency. This phe-

nomenon was first exhibited in Mullins (1947), where the author alluded that the degree

of softening for natural rubber was not the same for samples cut along and perpendicular

to the direction of the previous preconditioning tensile stretch, and thus some anisotropic

stress strain properties were developed. However, the corresponding experimental data

have not been published.

More recently the evidence that stress softening is an inherently anisotropic phe-

nomenon can be found for different rubber-like materials under different load cases. How-

ever, these investigations are almost restricted to a simple deformation history. Tension

tests in two orthogonal directions have been the most usual method to point out the strain-

induced anisotropy. Results can be seen in Laraba-Abbes et al. (2003) for a carbon-black

filled natural rubber as material, Diani et al. (2006b) for filled black ethylene propylene

diene (EPDM), Itskov et al. (2006) for carbon-black filled acrylate rubber (ACM), Hanson

et al. (2005) for a silica-filled polydimethylsiloxane (PDMS) and Park and Hamed (2000)

for different compositions of black filled styrene-butadiene rubber (SBR) and sulfur-cured

carbon black filled natural rubber (NR). Simple shear experiments were performed by

Muhr et al. (1999), they noticed that strain softening of polysiloxane polymer investigated

is smaller in directions orthogonal to the strain cycle causing the softening. Similarly un-

der simple shear, Besdo et al. (2003) showed that a prior loading, generated by a cyclic

one-side shear, lead to a material anisotropy verified during a symmetric loading, i.e.,

both-sided shear. Pawelski (2001) carried out two tests, first, a homogeneous plane-strain

compression using a cubic sample of an elastomeric material (VLGQ-rubber) rotated and

rotated back by 90◦ with respect to the first preloaded configuration. Here a special proce-

dure was required to correct the original measurements since compression is accompanied

by friction which spoils the experimental data. Second, for a polyurethane material, a

modified biaxial tension with tensile tests on secondary specimens afterward, was used in

a way to find an evidence for more complex memory behavior of the material.

Many physical interpretations for the Mullins effect have been proposed but few give

an interpretation of the direction influence of the stress softening. Let us quote Papkov

et al. (1975), who investigated the softening of siloxane rubbers. Their investigations

suggest that the most probable softening mechanism is not the separation of the polymer

molecules from the surface of the filler particles but the rearrangement of the chains on
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that surface as a result of slippage under stress. In addition, they considered that the

transition of a given filled system to the quasi-stable state during the deformation may

be accompanied not only by slippage of the chains on the surface of the particle but also

by a certain rotation and irreversible displacement of the particle in the polymer matrix.

This should lead to a corresponding change in the three-dimensional structure of the filled

rubber and may be accompanied by the development of anisotropy of the mechanical

properties. Hanson et al. (2005) provided another interpretation for the stress softening

mechanism, based on the remove of chains entanglements that causes the stress to be

lower on the second and subsequent strains, i.e., their mechanism conserves the number of

network chains and only the entanglements density is reduced with respect to the original

strain axis of the first load.

Some models aiming to describe the anisotropy of the stress softening are proposed

in the literature (see for example, Diani et al., 2004; Göktepe and Miehe, 2005; Shariff,

2006; Diani et al., 2006b; Ehret and Itskov, 2009). All these models provide a solid

theoretical basis for mathematical description of the stress softening, like an anisotropic

phenomenon, in rubber-like materials. However, the predictive capabilities of models

describing the anisotropic Mullins effect are mainly restricted to the uniaxial load case.

Horgan et al. (2004) reported that the anisotropic model cannot be validated since suitable

experimental data are not available. Pawelski (2001) advised that further experimental

works are necessary before one can decide how complex a material constitutive equation for

rubber-like material should be. Itskov et al. (2006) pointed out that additional experiments

regarding other load cases are needed. This allows to study further the influence of loading

cycles with complex deformation states on the appearance and evolution of the Mullins

effect in the case of changing principal stretch directions.

Within this context, the aim of this work is to quantify clearly the induced anisotropy

according to the applied strain history. The objective is to focus on the strain-induced

anisotropy study by verifying the influence of loading cycles in distinct directions using

two different pre-stretch methods to drive the primary stress-softening history. The paper

is organized as follows. In Section 3.2 the experimental method and results are presented.

First, uniaxial extension of a large plate was used to induce the primary deformation.

Then, the influence of induced anisotropy was investigated for different directions by

cutting different specimens from the original plate and comparing the second load tensile

curves. Second, the bulge test was used to generate different biaxial deformation histories,

and again cut specimens from the original plate are thus submitted to tensile tests. In

Section 3.3 a study of generated anisotropy is realized by analyzing the second load curves

of the different tests and comparing their strain histories. Finally, Section 4.5 contains

some concluding remarks and outlines some future perspectives.

3.2 Experimental study and analysis

The induced anisotropy by stress softening was experimentally studied. For this purpose,

samples were made of a filled silicone rubber called Rhodorsil RTV3428. Supplied as

two liquid components, the uncured silicone and the curing agent, this liquid mixture

is molded by injection to obtain a sheet with constant thickness (Meunier et al., 2008).
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The final samples are produced by a polyaddition, curing at 70 ◦C for 4 h in order to

accelerate the curing process and assure a sufficient cross-linking density. This material

exhibits a pronounced stress softening under different load cases, as reported in Machado

et al. (2010). In the same work, the manufacture procedure of specimens without any pre-

existent anisotropy and testing methods details using three-dimensional image correlation

(3D-DIC) are also described. With the 3D-DIC technique, it is possible to determine the

3D contour and the in-plane strain fields of the object surface. This process is carried out

by correlation of the images, taken by two cameras in the deformed state with their original

reference images. Thus, uniaxial tensile test and bulge test were used to precondition the

samples, i.e., to induce some primary stress-softening. In both cases, subsequent uniaxial

tensile tests are conducted on preconditioned specimens. The first experiment consists in

a homogeneous tensile path followed by tensile in different directions. After, the bulge

test is used to yield a very different biaxial strain-histories as first load path.

3.2.1 Mullins anisotropy induced by uniaxial tensile pre-stretch

Two identical rectangular specimens (l0 = 100mm, width w0 = 70mm and thickness

h0 = 2mm) were submitted to one cycle of stretch, at λ = 2.50 in uniaxial tension

along a principal direction referred to 0◦, using an elongation rate of λ̇ = 5.0× 10−3 s−1.

Note that RTV3428 behavior can be assumed independent of the rate of deformation

(see Machado et al., 2010). Then, a set of smaller specimens was cut from each of these

preconditioned large samples along five different directions 0◦ (first loading direction),

15◦, 30◦, 45◦ and 90◦ (orthogonal direction). An illustration is presented in Fig. 3.1(a).

All these cut specimens were submitted to the same pre-conditioning strain state and this

was verified thanks to strain field measurements.

Fig. 3.1(b) presents the virgin material tensile cycle (vir curve) and second load-

ing curves for the different directions specimens, both stretched until λ = 2.5 at λ̇ =

1.6 × 10−2 s−1. All subsamples unload curves are superposed with the virgin reference

sample unload curve and, for a clean visualization, they are not presented. A very small

residual elongation is observed. Thus the effect of permanent set in the cut samples can

be considered as negligible, since they were cut after a recovery time of 1 h.

It clearly appears that all second load curves come back on the first loading curve at

the same elongation (RP–point) which is the maximal elongation reached during the pre-

stretch. However, the main difference is the shape of the second load curves, the amount of

stress-softening can be relied to the angle between the first and second loading directions.

Note that with the angle increasing, the shape of the second load curves tend toward the

virgin material load curve (vir). The perpendicular direction (90◦) is nearly superposed

with the virgin curve. This evidence was noticed by Papkov et al. (1975) (for samples

with an inferior filler ratio), Park and Hamed (2000), Hanson et al. (2005) and Diani et al.

(2006b). On the other hand, in Papkov et al. (1975) (for samples with a superior filler

ratio), Laraba-Abbes et al. (2003) and Itskov et al. (2006), perpendicular specimens have

the same shape of the stress-strain virgin curve, but with a pronounced lower modulus.

This fact may be attributed to the filler nature, and their mass and volume proportion in

the polymeric matrix.
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Figure 3.1: (a) Preconditioned large sample with the representation of different orienta-
tions of the tensile test cut specimens. (b) Induced anisotropy represented by the super-
posed uniaxial stress-strain responses for the different angles between the first and second
loading directions. Curves are compared with the uniaxial tensile (load-unload) of a virgin
specimen.

3.2.2 Mullins anisotropy induced by biaxial tensile pre-stretch

The objective of this section is to propose an experimental test that permits to analyze

second tensile load curves in a material that experienced a more complex first load path. A

biaxial tensile pre-stretch can be used to generate a complex in-plane deformation history,

under incompressibility assumption. The complexity of this deformation history is given

by the biaxiality ratio (µ), that can be expressed as a relation between principal in-plane

stretches (λmax,λmin) in the form

µ =
ln(λmin)

ln(λmax)
. (3.1)

Thus, biaxiality ratio is very useful to characterize the first history imprinted in the

material at the first loading. Note that in the uniaxial tensile pre-stretch (Section 3.2.1),

the contractive stretches are the minimal principal directions, then the biaxiality ratio is

fixed in µ = −0.5.

In this work the bulge test is proposed as an original way to yield very different biaxial

strain-histories for first load path. As pointed in Machado et al. (2011b) bulge test is able

to provide more information than the traditional application to determine the material

equibiaxial response. It can be used to generate different biaxial states along a radial path

of specimen from the equibiaxial state (µ = 1) at the pole until the planar (pure) shear

(µ = 0), i.e., a large biaxiality ratio interval (µ ∈ [0, 1]).
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Using the 3D-DIC technique, it is possible to determine the three-dimensional surface

displacements and the principal stretches (λm, λc) in the meridional and circumferential

directions, as schematized in Fig. 3.2. From this point forward, these directions will be

denoted by the subscripts m and c respectively. Nevertheless, in the axisymmetric case,

deformed membrane principal stresses (σm, σc) are determined from principal curvatures

(κm, κc) combined with the measurement of the inflating pressure (p). These fields are

related as follow

σm =
p

2h κc
(3.2)

σc =
p

2h κc

(
2− κm

κc

)
, (3.3)

where h is the current thickness calculated using the incompressibility assumption. κm
and κc are deduced from 3D-DIC measurements. Thus, the stress-strain state is then

known at any surface point which enriches greatly experimental data deduced from bulge

tests. For a comprehensive explanation see Machado et al. (2011b).

The specimen geometry consists in thin circular plate, of initial radius R = 90mm

with a thickness h0 = 2mm. The circular plate is simply supported and subjected to an

uniform inflating pressure acting perpendicular to the current configuration. Using the

3D-DIC strain field measures, a set of interest points are specified along the radius of

undeformed membrane permitting to know the stress and strain histories for every point

over the deformed membrane surface. This set of points is represented in Fig. 3.2, where

each point can be regarded as a small specimen in view of 3D-DIC as a full field strain

measure method. Point a corresponds to the membrane center and the other points (b to

j) are 10mm equidistant through the meridional direction.

Figure 3.2: Schematic representation of biaxial preconditioning method and principal
stretches: (a) axisymmetric representation of the bulge test with the interest points; (b)
Illustration of the cut subsamples over different directions in the circular membrane.
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Fig. 3.3 presents the first loading strain and stress history of points a to h in function of

the load pressure. Note that each inflation state involves a heterogeneous stress-strain state

that evolves from an equibiaxial state at the pole (R = 0mm - point a) tending to planar

stretching nearest the clamp (R = 90mm - point j). Machado et al. (2011b) pointed

out the experimental difficulty concerning the measurements on the overall membrane

surface and the region near the clamp simultaneously. For materials that experience high

displacements a self-shadow effect is observed in this last region.

The highest reached values for principal stretches (λm, λc) and first invariant (I1)

experienced in the pre-stretch test for each point (a to j) are presented in Fig. 3.4(a).

Fig. 3.4(b) presents the mean value and the range of the biaxiality ratio (µ) for all pres-

sure load steps in each point a to i. The measured ratio is almost constant at a given

point and variations between the different pressure load steps can be disregarded. Due to

the experimental difficulties concerning the measurements near the clamp, the curves in

Fig. 3.4 were extrapolated for points i and j using polynomial approximation and repre-

sented by dotted lines. After a recovery time of 1 h, a set of tensile test specimens are cut.

Two series of samples are defined as follows: samples aligned to the meridional direction

denoted by 0o and samples tangent to the circumferential direction (or perpendicular to

the meridional direction) denoted by 90o. Both series are illustrated in Fig. 3.2(b).

At first, the samples aligned to the meridional direction (0o) were submitted to an

uniaxial tension test. The loading consists of a simple load unload cycle, where the upper

limit overpass the maximum value reached, in the biaxial pre-stretch (see Fig. 3.4(a)), by

the major principal stretch (λm). Fig. 3.5 presents the second load curves for the different

specimens and a virgin uniaxial tensile load curve (vir) as reference. The load curves of

points b, c and d are quasi superposed, thus they are not represented in the figure keeping

clear the results visualization.

It appears that all the curves are different. The figure highlights that closer the sample

is from the bulge pole, more stress-softening is observed. Two aspects are observed, the

difference between the reference curve (vir) and second load is increasing and the strain-

hardening for the return point (RP ) on the reference curve appears later. These results

are in consistency with the first maximal deformation level presented in Fig. 3.4(a).

Second, the samples cut at points g, h and i perpendicularly to the meridional direction

(90o) are tested. However, the second load–unload curves corresponding to points a, g, h

and i are presented for both directions (0o and 90o) in Fig. 3.6 and compared to the virgin

load curve (vir). The deformation is evaluated locally, using DIC, in a small zone located

in the samples center. It clearly appears that the second load curves, for both directions,

come back on the first loading curve at that same maximal deformation but with different

levels of stress-softening. This confirms the results of the previous Section (3.2.1). But

this time, a stress softening appears in the orthogonal directions as the material was also

stretched in this direction during the preconditioning path.
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Figure 3.3: Bulge test deformation history for points a to h. Principal stretches (λm,λc)
and current principal stresses (σm,σc) are presented respectively on left and right axis
according to the inflating pressure (p).
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Figure 3.4: (a) Highest deformation level experienced on the first biaxial load history
(p = 18 kPa) for each meridional point (a to j) in terms of principal stretches (λm, λc)
and first invariant (I1); (b) Mean value and range of biaxiality ratio (µ) during all pressure
load steps. Points i and j were extrapolated using a polynomial approximation (dotted
lines).

Figure 3.5: Influence of the biaxial first loading on tensile test response. Uniaxial traction
performed at 0o with respect to the meridional direction for the subsamples a, e, f, g, h,
i, and j.
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Figure 3.6: Second load (and unload) curves of specimens a, g, h and i cut from the bulge
plate at 0o and 90o with respect to the meridional direction. Note that, for point a, only
one curve is presented since the all directions are equivalent.

3.3 Discussion

3.3.1 Anisotropy induced by uniaxial tensile pre-stretch

First, the uniaxial tension deformation history tests are analyzed. Fig. 3.7(a) shows the

stress ratio (δ) between the uniaxial tension virgin load curve (P0) and the set of subsam-

ples orientated at 0o, 15o, 30o, 45o and 90o directions (P
(α)

2nd )

δ =
P

(α)

2nd

P0
. (3.4)

where P denotes the nominal tensile stress. The curves, concerning Eq.(3.4), highlight

that, given a deformation level, there is no stress proportionality between the different

directions.

Recalling that the first Piola–Kirchhoff stress tensor P is work-conjugate to the rate

of deformation gradient Ḟ, a stored strain energy density can be established as the work
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done by the stresses from the initial to the current position as

W =

∫ t

0
P : Ḟ dt. (3.5)

Thus, it becomes possible to define an energy loss ratio η that quantifies the evolution of

the energy loss by Mullins effect according to the loading angle α, given by

η =
W0 −W(α)

2nd

W0 −W(0o)

2nd

(3.6)

where W0 and W(α)

2nd are respectively the strain energy of virgin material and the strain

energy of a second loading in a given direction α. Fig. 3.7(b) presents the evolution of

the energy loss by Mullins effect according to the loading angle in the uniaxial tensile

pre-stretch condition for the maximal reached tensile stretch (λmax = 2.50). The second

load W(0o)

2nd is used as reference since the same direction is used for the first and the second

loading curves. Using a periodic approximation, the function η in Eq. (3.6), is fitted by

η = a0 + a1 cos(2α) + a2 cos(4α) (3.7)

where a0 = 0.44, a1 = 0.46 and a2 = 0.10. It appears that the energy loss ratio (η) evolves

from a maximum, when first and second loadings are in the same direction to a minimum,

close to zero, when the directions of first and second loadings are orthogonal.

Figure 3.7: (a) Stress ratio between the first virgin load curve and the set of subsamples
orientated at 0o, 30o, 45o and 90o (perpendicular) directions. (b) Ratio of energy loss
according to the different loading angles.

3.3.2 Anisotropy induced by biaxial tensile pre-stretch

Concerning the biaxial test preconditioning, Fig. 3.8 shows the tensile test stress ratios of

specimens cut in meridional (0o) and circumferential (90o) directions in the bulge spec-

imen with respect to the tensile test virgin curve (vir). Similarity to Section 3.3.1, no
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proportionality between the first and second load curves was observed. Nevertheless, a

main difference appears, compared with Fig. 3.7. The curves at 90o for points g and h

present a considerable stress softening. This is due to the biaxial pre-loading where the

directional intensity of the stress softening depends on the biaxiality ratio (µ). This em-

phasizes that subsequent directional behavior is strongly influenced by how the maximal

pre-loading is applied.

Figure 3.8: Stress ratio between the first virgin load curve (vir) and the second load for
the uniaxial extension, performed on meridional (0o) and circumferential (90o) specimens
for points a, g, h, and i.

3.3.3 Relevance of maximal deformation criterion for describing Mullins effect

The choice of the Mullins effect evolution criterion is fundamental for the description of

different loading paths. Considering the deformation of the material as a thermodynamic

process, this criterion, i.e., this state variable, must describe the momentary maximum

condition of the material deformation regardless of the path by which the system goes from

one state to another. In other words, this state variable defines how the stress softening

evolves for an arbitrary path with respect to the maximum state achieved in the previous

load path.

In the uniaxial tensile pre-stretch case, Fig. 3.1(b) showed that all second load curves

come back on the first load curve at the same point (RP ), characterized by its tensile

stretch, independently of the direction of the second load. For other load types than

tension, the maximum value of the major principal stretch is important to define the return

point (RP ) but deformations in other directions cannot be neglected in stress softening

accounting. Machado et al. (2010) showed that for an isotropic approach, the strain energy

or the first invariant can be used to describe the evolution of stress softening. Fig. 3.5 which
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presents the second load curves after the biaxial tensile pre-stretch is replotted according

to the first invariant in Fig. 3.9(a). In the same figure, the maximal value of I1(max) reached

during the biaxial preconditioning load from Fig. 3.4(a) have also been plotted. For each

point a to j, the value of the return point (I1(RP )), i.e., where the second load curves

come back on the first uniaxial loading one (vir curve), are compared to the I1(max). The

results are presented in Fig. 3.9(b). The points are quite aligned, but they do not fit well

the first bisectrix. The bisectrix represents the one-to-one relationship between the first

invariant for two different loading paths. It means that the first invariant cannot be an

efficient criterion to describe the maximal deformation.

Figure 3.9: Influence of the biaxial first loading on tensile test response. (a) Uniaxial
traction performed at 0o with respect to the meridional direction for points (a, e, f, g,
h, i, and j – represented by solid lines) and the maximal first invariant I1(max) (dots)
reached during the biaxial first load (from Fig. 3.4(a)). (b) relation between the maximal
first invariant I1(max) and the value of I1(RP ) when the second load curve comes back on
the reference first loading curve (vir-curve).

3.3.4 Relevance of maximal strain energy criterion for describing Mullins ef-

fect

The above results highlight that the maximal value of a thermodynamic variable reached

in the loading history based on deformation measures are not sufficient as the amount

of stress softening varies for a same maximal previous deformation. The fact that the

material was loaded in the transverse direction in the biaxial pre-stretching, has a large

influence on the stress softening, that means that a three dimensional criterion must be

taken into account.

The Mullins effect can be quantified by the ratio between the strain energy during first

loading (W0) and the second loading (W2nd), defined as

ψ =
W2nd

W0
. (3.8)
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These strain energy densities are evaluated by integration of first and second load

curves for both preconditioning methods. Note that, in the biaxial preconditioning, W0

is evaluated during the bulge test (for each point a to h), whereas W2nd is evaluated from

the second tensile tests up to the return point limit. Hence, the ratio of strain energy

is calculated and presented in Fig. 3.10. Furthermore, the cyclic tests results of uniaxial,

planar and equibiaxial extensions, published in Machado et al. (2010), were extracted and

superposed in the same plot composing an additional information about different loading

paths. It clearly appears that all points obtained by different strain histories follow a

tendency and they can be fitted by a master curve. An exponential decay approximation

is proposed for the function (ψ), and given by

ψ = ψos + ψ0 exp(−cW0) (3.9)

where ψos = 0.29, ψ0 = 0.63, and c = 0.75m3/MJ. Note, in Fig. 3.10 that the energy ratio

evolves from a maximum, where even minor deformation starts the dissipation process,

to a minimum that cannot be reached before the rupture of the material. However, this

master function does not make sense when the second load energy (W2nd) is evaluated in a

different direction than the first loading principal direction. The results from the uniaxial

pre-stretching clearly show this non-compliance. Thus, strain energy differences between

principal directions should be analyzed.

Figure 3.10: Strain energy ratio (ψ) between second loading curve and the primary virgin
loading curve for different strain histories. Points are fitted by an exponential decay
function.
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3.3.5 Analysis of a decomposed strain energy

Considering that the strain energy at first load in biaxial tension (WB
0 ) can be decomposed

into two parts, then

WB
0 = W(m)

0 +W(c)
0 =

∫
Pm dλm +

∫
Pc dλc (3.10)

where W(m)
0 and W(c)

0 are the strain energies at the first load for meridional and cir-

cumferential directions respectively. A schema is proposed in Fig. 3.11(a) to explain this

decomposition. Fig. 3.12(a) shows how these energy portions vary from the pole until the

bulge border for the maximal pressure step (p = 18 kPa). The meridional energy (W(m)
0 )

decreases along the meridional direction but remains important, whereas the circumferen-

tial energy (W(c)
0 ) tends to zero near the specimen border where there is no circumferential

deformation.

With the knowledge of the above decomposition, the suitability of the parameter (W0)

to describe the stress softening can finally be evaluated. The idea is to compare if two

different first loading paths can produce an energetically equivalent deformation state.

The schema proposed in Fig. 3.11(b) for a generic position (a to h) in the bulge surface

helps to explain this evaluation. First, the return point (RP ) of second loads in the

uniaxial tension (vir-curve) for each sample a to h are identified. It is important to

remind that, for a given position in the bulge surface, the return occurs at the same point

(RP ) independently of the second tensile load direction as shown in Fig. 3.6. Then, an

equivalent energy of a virgin material in uniaxial traction (WU
0 ) is evaluated up to this

same return point RP . Finally, this equivalent energy (WU
0 ) is compared with the real

energy (WB
0 ) used to pre-stretch the membrane.

The strain energy WU
0 are plotted in function of WB

0 in Fig. 3.12(b). It clearly appears

that the WU
0 values are not in the graph bisectrix. The fact that the total energy WB

0

are in the right side from the bisectrix means that a superior amount of energy would be

necessary to produce the same state equivalent state given by the WU
0 energy. In order

words, there is a part of the total strain energy that was not used in the stress softening

process. Thus, the total strain energy is not the key to describe the return on the virgin

curve.

To measure the influence of loading directions, the same comparisons are realized but

considering the decomposition proposed in Eq.(3.10). Fig. 3.12(b) shows that the maximal

principal direction strain energy, W(m)
0 , fit better the bisectrix curve, while for the energy

in the other principal direction, W(c)
0 , nothing can be concluded. This means that, if the

maximal principal direction remains the same during the first and second load cycle, the

amount of strain energy can be a measure of the Mullins effect in this direction. In the

other directions, a coupling effect exists between different directions and it influences the

Mullins effect amount.
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Figure 3.11: First and second load strain energy schema. (a) The strain energy decom-
position for the biaxial pre-stretching. (b) The equivalent energy (WU

0 ) evaluated until
the return point (RP ) of a given biaxial pre-stretched sample on the uniaxial first load
reference curve (vir).

Figure 3.12: Bulge test strain energy analysis.
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3.4 Conclusion

The motivating key for this work was the absence of a comprehensive experimental study

to build evidence showing that the Mullins effect in filled silicone rubbers is a strongly

anisotropic phenomenon. Using the 3D-DIC method as a non-contact full-field optical

measurement, a large strain level was achieved and two methods were employed to record

an initial deformation history. The results showed that preconditioning tensile cycles in

one direction hardly cause any softening in the perpendicular direction. Nevertheless,

all second load curves come back on the first tensile load curve at the same point inde-

pendently of the direction of the second load. The results with respect to the influence

of Mullins effect in the intermediate directions permit to examine in detail the angular

distribution of memory effects for testing and calibrating numerical models.

The use of bulge test, as a biaxial preconditioning test, was originally proposed to find

an evidence for an even more complex memory behavior of the material. The measure-

ments made along the meridian of the inflated membrane provide unprecedented informa-

tion about the history of principal stress and principal strain directions without an explicit

dependency of any constitutive relation. Results showed that the induced anisotropy is

dependent on the pre-stretch biaxiality ratio. Again, the return on the first load reference

curve of all second load curves occurs at the same point, independently of the second load

direction. On one hand, the ratio of energy between first and second load loading seems to

follow a master behavior according to virgin strain energy. On the other hand, the come

back on the virgin uniaxial curve can be controlled by the amount of energy, but only in

the maximal principal direction whereas in the other directions, a coupling phenomena

exist between different directions.

Note also that the form and intensity of the anisotropy of the Mullins effect could

depend on the elastomer type, the properties of filler particles, and their mass and volume

proportion in the polymeric matrix.





Chapter

4 Theory and identification of a constitutive model

of induced anisotropy by the Mullins effect

G. Machado, G. Chagnon, D. Favier

To be submitted

During cyclic loading, rubber like materials exhibit a stress-softening phenomenon

known as the Mullins effect. In the last few years, some constitutive equations have been

proposed to deal with this effect including induced anisotropy, but all these models lay on

few experimental data. In that respect, data on filled silicone rubber were recently presented

[Machado, G., Chagnon, G., Favier, D., 2011. Induced anisotropy by the Mullins effect

in filled silicone rubber. Mech. Mater., submitted]. The authors used uniaxial and biaxial

tests to precondition samples inducing some primary stress-softening. Next, uniaxial ten-

sile tests were conducted on preconditioned samples. An analysis of these data permits to

highlight that the maximum elongational energy in the maximum principal direction is the

governing parameter that defines the return–point on the virgin loading curve. Moreover,

the relation of the elongational energy in each direction with the maximum elongational

energy permits to describe the amount of stress-softening. A generic form of modeling is

built by superposing an isotropic hyperelastic model and a stress-softening model based on

the double network theory, taking into account the contribution of many spatial directions

and a global equivalent measure. Finally a constitutive equation is proposed. The model is

fitted and compared to experimental data. The abilities of such kind of model are finally

explained.
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4.1 Introduction

Rubber-like materials present a stress-softening after a first loading cycle, known as the

Mullins effect (Mullins, 1947). Different studies have highlighted that this phenomenon

induces anisotropy by a strong directional stress-softening dependency. Different defini-

tions have been given to the Mullins effect, in this paper the Mullins effect is considered

as the difference between the first and second loadings.

In a first approach, many isotropic modeling were proposed. First, physical modeling

taking into account the evolution of the chain network were proposed. Govindjee and Simo

(1991, 1992) proposed a model based on the evolution of the macromolecular network by

a decomposition of the network into a hyperelastic one and an evolving one. In an other

way, Marckmann et al. (2002) considered that the network can be represented by the eight

chains model (Arruda and Boyce, 1993) with chain lengths and chain densities which are

evolving with the maximum deformation. In another way, double network theory was

developed (Green and Tobolsky, 1946) considering that the rubber-like material can be

decomposed into a hard and a soft phase; the hard phase is transformed into soft phase

with the stress-softening. Different equations were proposed (Beatty and Krishnaswamy,

2000; Zuñiga and Beatty, 2002). At the same time, the damage theory was often used to

describe the stress-softening (Simo, 1987; Miehe, 1995; Chagnon et al., 2004). In a last

point of view, Ogden and Roxburgh (1999) and Dorfmann and Ogden (2003) proposed

models based on pseudo-elasticity. All these models fit more or less accurately experimen-

tal data but they consider only one load direction, i.e., without changing loading direction

between first and second loadings. For a more exhaustive review about these models, the

reader can refer to Diani et al. (2009).

To improve the modeling and to fit anisotropic stress softening, new approaches were

developed taking into account the difference of stress-softening in each direction. First

Diani et al. (2006a) proposed a generalization of the Marckmann et al. (2002) model by

a decomposition of the rubber-like materials by means of chains oriented into 42 or more

directions in space. In each direction, the quantity and the length of chains can evolve

with the maximum elongation in the considered direction. This model can describe dif-

ferent stress-softening in different directions with permanent deformation after unloading.

Dargazany and Itskov (2009) proposed the same kind of approach by taking into account

that in each direction, different chains with different length exist. They integrate the den-

sity of probability in each direction by taking into account the evolution of the network

at each step. Shariff (2006) proposed an anisotropic damage model taking into account

different damages in the three principal directions by the introduction of a second order

damage tensor. This model permits to describe transverse anisotropy of the Mullins ef-

fect. In the same way Itskov et al. (2010) proposed three damage evolutions for the three

principal directions. These models permit to recover a stiffer material in the orthogonal

direction when the material is loaded at a higher deformation than the one previously

applied. This property is not adapted to all materials.
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All these anisotropic models are proposed by analyzing oriented tensile tests. Nev-

ertheless, Machado et al. (2011a) recently performed other original tests based on pre

conditioning with uniaxial tension and biaxial tension tests. This paper proposes a new

approach for the modeling to describe these experimental data. In Section 4.2, the global

framework of the Mullins effect modeling is proposed owing to experimental data of the

literature on silicone rubber. In Section 4.3, a new approach is proposed to write consti-

tutive equations by introducing a tensor that describes the repartition of the elongation

energy in the space. The conditions to be verified by the equations are detailed. In

Section 4.4, a first constitutive equation is proposed. It is fitted and compared to exper-

imental data. Finally, Section 4.5 contains some concluding remarks and outlines some

future perspectives.

4.2 Macromolecular approach to model Mullins effect

4.2.1 Filled silicone behavior

Different tests highlighting the stress softening anisotropy have been presented in the

literature on different rubber-like materials in the last few years, see for example (Muhr

et al., 1999; Besdo et al., 2003; Diani et al., 2006b; Hanson et al., 2005). In this paper,

attention is focused on the largest and most diverse database concerning Mullins effect

anisotropy of a rubber like material to the best of our knowledge. These data concern the

results on the RTV3428 filled silicone rubber Machado et al. (2011a).

The first set of experimental data is based on classical experimental tests, i.e., cyclic

experiments with an increasing deformation after each cycle, were realized during tensile,

pure shear and equibiaxial tensile tests. The data are reported in Machado et al. (2010).

A second set of experimental data is based on stress-softening anisotropy, induced by

two distinguished pre-conditioning methods (Machado et al., 2011a): the first one (noted

as TT in the following), consists in a first loading in tension and a second loading also

in tension, but at this time in four different directions; and the second pre-conditioning

method (noted as BT), consists in a first biaxial extension loading followed by a second

loading in tension. The originality of these data is that the loading states are very different

between the first and the second loads. Moreover the orientation of the maximal principal

deformation is not necessarily the same between the two loads.

These new experimental results question the existing anisotropic constitutive equations

and the main reasons are detailed here. First, Diani et al. (2006a) and Dargazany and

Itskov (2009) models present an important permanent deformation that is related to the

stress-softening. But here, the material exhibits an important stress-softening without

permanent deformation. Second, for a second tensile loading orthogonal to the first loading

one, the models of Shariff (2006) and Itskov et al. (2010) present a stiffer behavior than

the virgin material which is not the case of the filled silicone rubber. Last, all these

modeling consider different material directions and the Mullins effect is controlled only

by the maximum elongation in the considered direction. Thus a new way to treat Mullins

effect should be proposed, at the sight of Machado et al. (2011a) experimental data.
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4.2.2 Two-network theory

The results presented on silicone rubber-like materials highlight that unfilled silicone rub-

bers do not present stress-softening (Meunier et al., 2008) whereas filled silicone rubbers

(Machado et al., 2010) present an important one. For this silicone rubber material, it

can be argued that the Mullins effect is principally due to the presence of filler in the

material which is not the case for every rubber like material. In the light of these findings,

a model is proposed based on Govindjee and Simo (1991, 1992) theory. The macromolec-

ular network can be represented by the network drawn in Fig. 4.1. There exist different

Figure 4.1: Representation of the silicone organization with macromolecular chains and
filler particles

macromolecular chains in the network, those which are linked to filler and those which

are only linked to other macromolecular chains. Govindjee and Simo (1991, 1992) did

the hypothesis that only the chains which are linked to filler are concerned with Mullins

effect. The same hypothesis is considered here, that means that the energy density can

be decomposed into two parts

W = Wcc +Wcf (4.1)

where Wcf and Wcc represent the energy densities of the chains linked to filler, and of the

chains linked to other chains, respectively. On the one hand, as it is considered that the

chains linked to other chains do not undergo Mullins effect, Wcc is therefore represented

by a hyperelastic energy density. Moreover, all the chains are randomly oriented in the

material, that means that an isotropic strain energy density can be used. On the other

hand, Wcf should represent the anisotropy of stress-softening of the material. Thus Wcf

must be decomposed into the contribution of the material in different directions in space.

Bazant and Oh (1986) proposed different orientation schemes, that define the set of vectors

a
(i)
0 with different weight ω(i) for each direction to obtain a material as close as possible
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to an isotropic material when all the chains have the same mechanical behavior. Wcf is

then written as

Wcf =
n∑

i=1

ω(i)W(i)
cf (a

(i)
0 ) (4.2)

where n is the number of considered directions and W(i)
cf (a

(i)
0 ) is the elongational hypere-

lastic energy of the chain in the initial direction a
(i)
0 .

4.3 Choice of the governing parameters of the Mullins effect

4.3.1 Analyze of literature experimental data

The different conclusions identified by Machado et al. (2011a) are analyzed and the conse-

quences for the modeling are detailed. During TT tests (uniaxial tension preconditioning

followed by second tensile tests) whatever is the orientation of the second loading cycle,

the strain-stress curves come back on the first loading curve on the same point corre-

sponding to the maximum deformation encountered during the first tensile loading cycle.

Nevertheless the amount of stress softening depends on the angle between the first and

second loading cycles. This means that the return on the tensile virgin curve is controlled

by a maximum deformation but the amount of stress softening depends on the orientation

of the loadings.

The BT tests (biaxial tension followed by second tensile test) were realized and the

heterogeneity of the strain state and the axisymmetry were verified thanks to three-

dimensional image correlation measurements. In the preconditioning step, the bulge test

specimen underwent biaxial loadings with different biaxiality ratios. At the top of the

bulge test, an equibiaxial loading is generated whereas a planar tension state is generated

near the grips. Between these two points different biaxial states are generated (Machado

et al., 2011b). The specimens were cut along circumferential and meridional directions in

the bulge test specimen and they were tested in tension. The different second strain-stress

tensile curves, again, come back in the same point on the virgin tensile loading curve but

with a different amount of stress-softening according to the direction (circumferential or

meridional). The conclusions are thus the same as TT tests but with a biaxial loading as

the preconditioning test.

This encourages to consider that the elongational energy in the maximal principal

elongation is the governing parameter for the come-back on the first loading curve whatever

is the second loading. Moreover the stress softening in the other directions are linked to

this parameter but it is attenuated, if the maximum principal loading is not in the same

direction between the two loads. A measure for these quantities should thus be introduced.

4.3.2 New measure definition

The strain energy is often used to describe the Mullins effect but, its use can only be

limited to isotropic approach as the energy is a scalar global measure of the deformation

state. A clue can be to compare the elongational energy in the different directions. It
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is, thus, proposed to introduce a measure of the elongational energy in one direction.

Let us note a
(i)
0 a material direction in the undeformed configuration. This direction is

transformed into a(i) = Fa
(i)
0 after a deformation, where F is the deformation gradient.

The elongational energy increment dM(i) during a time increment dt in the direction a(i)

is obtained by the scalar product of the stress vector by the deformation vector increment,

i.e.,

dM(i) = a(i) · σDa(i) dt (4.3)

where σ is the Cauchy stress tensor, D is the rate of deformation tensor. In the initial

configuration, the elongational energy in the a
(i)
0 direction is written as

dM(i) = a
(i)
0 · FTσDFa

(i)
0 dt. (4.4)

The global elongational energy is thus defined as

M(i) = a
(i)
0 ·

[∫ t

0
FTσDF dt

]
a
(i)
0 = a

(i)
0 ·Ma

(i)
0 (4.5)

this permits to introduce a tensor M, defined in the reference configuration, that describes

the repartition, throughout the three-dimensional space, of the elongational energy. Let us

represent the material by a distribution of n−direction a
(i)
0 oriented in any space direction,

as proposed by Bazant and Oh (1986). Different noticeable parameters can be defined.

The maximum elongational energy for each direction a
(i)
0 in the history is

M(i)
max = max

τ≤t
M(i)(τ) (4.6)

At the current time t, the maximum instantaneous elongational energy in any direction is

defined as

I(t) = max
i

M(i)(t) (4.7)

And last, the maximum elongational energy in any direction in the history is defined as

G = max
τ≤t

I(τ) = max
i

M(i)
max. (4.8)

4.3.3 Construction of the evolution equation

An evolution function F (i) is introduced along each direction, it describes the evolution of

the network in the considered direction. The global elongational energy is then rewritten

as

W = Wcc +

n∑
i=1

ω(i)F (i)W(i)
cf . (4.9)

At the sight of the silicone filled rubber experimental data, the function F (i) can be written

as a function of the characteristic energy measures previously introduced

F (i) = F(M(i),M(i)
max, I,G) (4.10)
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The main difference with the models from the literature is that the function F (i) does

not only depend on what happens in the considered direction a
(i)
0 but also on the global

elongational energy in the material, i.e., I and G. Then, different forms can be proposed.

In this paper, the concept of double-network is employed similarly to the work of

(Beatty and Krishnaswamy, 2000), and some hypothesis on the F (i) definition must be

established. During a first loading for the material, i.e., I = G the function F (i) should

not evolve, that means that

F(M(i),M(i)
max, I = G,G) = 1 (4.11)

Moreover, if the material is stretched in a given direction for the first time, the function

F (i) should not evolve in this direction whatever is the deformation level in this direction

as well as the global deformation state, thus

F(M(i) = M(i)
max,M(i)

max, I,G) = 1 (4.12)

That means that during a first loading curve the function F (i) does not intervene (i.e.

F (i) = 1) and the energy density is simply hyperelastic. However, during a second loading

curve the function evolves in the interval given by

F(M(i),M(i)
max, I,G) ∈ [0, 1] (4.13)

Considering the deformation of the material as a thermodynamic process, the double net-

work approach establishes that the evolution function depends on the difference between

the maximum instantaneous state and the maximum state achieved along the history.

In an anisotropic approach, it is possible to decompose this contribution according to

the maximum principal value and according to each direction. Moreover, the amount

of stress-softening is directly linked to the orientation of the loading, the ratio of what

happens in each direction compared to the maximum deformation should be taken into

account. In this way, a general form is proposed as follow

F = 1−F1(G − I) F2(M(i)
max −M(i)) F3

(
M(i)

max

G

)
(4.14)

where F1, F2 and F3 are functions to be determined. The conditions evoked in Eqs. (4.11)

and (4.12) lead to

F1(G − I) = 0 if G = I (4.15)

F2(M(i)
max −M(i)) = 0 if M(i)

max= M(i). (4.16)

Now, different constitutive equation forms can be proposed for each function F1, F2 and

F3 in Eq. (4.14).

4.4 First anisotropic modeling constitutive equation

4.4.1 Hyperelastic constitutive equation

The advantage of such formulation is that the first loading curve is independent of the

evolution function on the contrary of damage mechanics (Lemaitre and Chaboche, 1990).
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Thus, the choice of the hyperelastic energy only depends on the first loading curves. In a

first approach, it is proposed to use the classical Mooney (1940) constitutive equation to

represent the isotropic energy density, then

Wcc = C1(I1 − 3) + C2(I2 − 3) (4.17)

For the anisotropic part of the constitutive equation, the classical centrally symmetric

2 × 21 scheme was chosen to represent the material directions (Bazant and Oh, 1986).

The vector and weight of each direction are re-called in AppendixB. All the other direc-

tion distribution schemes could also be used. For a comparative study between different

numerical integration schemes, see Ehret et al. (2010).

The non-Gaussian theory is classically used to capture the anisotropy. Diani et al.

(2006a) and Dargazany and Itskov (2009) use the Langevin chain representation for W(i)
cf

energy. The great advantage of this choice is that it brings physical understanding to

the modeling and it presents two main consequences. The first one is that the zero-

stress state is only ensured by the compensation of all the directions contribution as

∂W(λ(i))/∂λ(i) ̸= 0 if λ(i) = 1. Hence, this formulation could hardly be used for an

initially non-isotropic material. In the second, this choice permits to capture an important

permanent deformation of the material after a loading cycle. However, in filled silicone

experiments, it was shown that the permanent deformation is quite negligible. For this

purpose, the classical approach of hyperelastic anisotropy approach using the anisotropic

strain invariant I
(i)
4 = a

(i)
0 · Ca

(i)
0 is used, where C = FTF is the right Cauchy-Green

strain tensor. The function should verify the following conditions

W(i)
cf (I

(i)
4 ) = 0 if I

(i)
4 = 1 (4.18)

∂W(i)
cf (I

(i)
4 )

∂I
(i)
4

= 0 if I
(i)
4 = 1. (4.19)

In a first approach, an ordinary constitutive equation is used, considering that the chains

are only stretched by tensile stresses. In otherwise, compressive stretches lead to buckling

of the chains. Thus, one may write

W(i)
cf = K(i)

(
I
(i)
4 − 1

)2
if I

(i)
4 ≥ 1 else 0. (4.20)

This formulation can be adapted to non-initially isotropic material by choosing different

functions for W(i)
cf . As the filled silicone rubber is initially isotropic, every W(i)

cf is initially

the same in all directions, i.e., ∀i, j K(i) = K(j).

4.4.2 Stress softening constitutive equation

In part 4.3.3, a multiplicative decomposition was postulated in Eq. (4.14). The use of

simple power functions, for F1, F2 and F3, is proposed to represent the stress softening,

given by

F (i) = 1− η

√
G − I
G

√
M(i)

max −M(i)

G

(
M(i)

max

G

)2

(4.21)
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where η is a material parameter. The functions F1 and F2 are normalized according to the

maximum elongational energy G to ensure a normalized evolution function for each second

loading curve. It is important to note that, even if the objective is to describe Mullins effect

anisotropy, the constitutive equation for stress-softening only depends on one parameter η.

All the other parameters describe the hyperelastic first loading. The evolution functions

have the same form in all directions, but this approach could be extended to non-isotropic

material by defining different values for the parameter η in the different directions.

4.4.3 Comparison of the modeling with experimental data

The model is fitted on all the experimental data presented in Machado et al. (2010, 2011a),

i.e., tests where the principal stretch directions remain unchanged during first and second

load or tests where the principal stretch directions are not necessarily the same during

first and second loads. First, the parameters of the hyperelastic constitutive equations are

fitted on the different first loading curves. Different parameters can be chosen according

to the repartition of the elongational energy between Wcc and Wcf .

Considering a second tensile loading immediately before the sample rupture, the most

stress softening level is obtained and this state corresponds to the elongational energy

of chains that were not affected by the Mullins effect. Thus, to ensure a good balance

between Wcc and Wcf the portion Wcc, i.e., the Mooney model, is fitted on the beginning

of the second tensile loading curve at the higher deformation achieved.

Next, the part of Wcf is fitted to complete the stress amount. The fitted parameters

are presented in Table 4.1. The simulations of the first loading curve are illustrated

in Fig. 4.2. It appears that the model describes perfectly uniaxial and pure shear tests

whereas equibiaxial tests are underestimated.

Table 4.1: Values of the constitutive equation parameters

Parameter Value

C1 0.05MPa
C2 0.03MPa

∀i K(i) 0.10MPa
η 2.0

The last parameter that describes the stress-softening is fitted on the second loading

curves for all the tests, the value η = 2.0 is obtained. The condition in Eq. (4.13) must

be satisfied, and as explained the function F (i) cannot be negative. If its softening is too

large, i.e., F (i) < 0, the value F (i) = 0 is imposed. That means that in the considered

direction a great number of chain–filler links were broken. In the second load, for the

same direction, the suspended chains are no longer acting enough to impose a force at the

macromolecular network.

The simulations of the cyclic uniaxial tensile, pure shear and equibiaxial tensile tests

are presented in Fig. 4.2 and it appears that the model describes quite well all these

tests. However, the equibiaxial stress is underestimated, presenting the same deviation as

previously quoted. This phenomenon is due to the hyperelastic equation and not to stress
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softening equation. As pointed out by Marckmann and Verron (2006) and Boyce and

Arruda (2000), there are very few hyperelastic constitutive models able to simultaneously

simulate both multi-dimensional data with a unique set of material parameters. Even if

the first loading curve is underestimated, the form of the stress softening is well described.

Figure 4.2: Comparison of the model (solid lines) with experimental data from Machado
et al. (2010) (dotted lines) for: (a) cyclic uniaxial tensile test, (b) cyclic pure shear test
and (c) cyclic equibiaxial test.

Next, tensile tests with a change of loading direction between the first and second

loads are confronted. A simulation of the modeling is presented in Fig. 4.3(a). It appears

that the trend is exactly what is presented in Machado et al. (2011a). All the second

loading curves come back on the same point of the first loading curve and the amount of

stress softening is directly linked to the angle between the principal stretch directions of

the first and second loads. A detailed comparison with experimental data is presented in

Fig. 4.3(b-f). The model does not superpose perfectly experimental data, but all trends
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are quite well described.

To finish, the model is used to simulate BT tests, the first load being a biaxial test

and the second load being a tensile test. The comparison of the second loading curves is

presented in Fig. 4.4. It appears that stress softening is moderately overestimated by the

model, however the come-back on the first loading curve is perfectly described.

All these simulations emphasize that the use of this new elongation energy measure is

a good point to describes the come back of the second loading curve on the virgin one.

The amount of stress-softening is well described for cyclic loading experiments and for

TT tests, where the principal stretch directions were not the same during first and second

loads. Nevertheless, the stress softening during BT test is overestimated.

It can be noticed that the model describes correctly all the experimental tests with a

simple constitutive equation which only depends on one parameter. Evidently, the results

can be improved by proposing more complex constitutive equations, that consequently

would lead to a significant increase in the number of parameters. Nevertheless, the pre-

sented results allowed to demonstrate the efficiency of this new approach.
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Figure 4.3: Comparison of the model (solid lines) with TT uniaxial pre-stretching exper-
imental data (dotted lines). (a) simulation of the model for different orientations of the
second load. Details of the experimental (dotted lines) and modeled (solid lines) first and
second load curves with an angle between stretch direction of: (b) 90◦, (c) 45◦, (d) 30◦,
(e) 15◦ and (f) 0◦.
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Figure 4.4: Comparison of the model (solid lines) with BT biaxial pre-stretching experi-
mental data (dotted lines). Curve a simulation of the model for the second tensile load
after an equibiaxial test; curve g simulation of the model for the second load after a biaxial
test of biaxiality ratio µ = 0.7; curve h simulation of the model for the second load after
a biaxial test of biaxiality ratio µ = 0.5

4.5 Conclusion

The present paper presents an original approach to model the stress induced anisotropy

by the Mullins effect, by the definition of a tensor to measure the repartition of the elon-

gational energy in space. The comparison of the elongational energy in different directions

with the principal maximal elongational energy permits to create a new formulation for

stress softening modeling. In this approach, the constitutive equation is written in function

of the variation of elongational energy in each direction and the variation of elongational

energy in the maximal principal direction. This new approach captures the principal

characteristics of the Mullins effect underlined in literature. This new means to describe

Mullins effect anisotropy can be a good starting point to elaborate new constitutive equa-

tions.

In this paper, a simple constitutive equation to describe the stress softening evolution

was proposed, depending on only one parameter. It clearly appears that the results are

quite encouraging for a model that can describe many different experimental tests, whit

very different strain histories, with only one parameter. Of course, the agreement with

the experimental data can be improved by using more sophisticated constitutive equation

forms.
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5 Finite element numerical implementation

In a typical implicit finite element analysis of a nonlinear boundary-value problem, global

Newton-type iterative schemes necessitate the computation of the tangent modulus being

consistent with the numerical scheme used for the update of the internal variables. In

this context the constitutive equations proposed in Chapter 4 were simplified to facilitate

the implementation into a finite element code via a user-defined material subroutine. The

Abaqus software was chosen for the proposed implementation.
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5.1 Introduction

The next sections briefly outline the principal equations of nonlinear continuum mechanics

that describe the fundamental geometric mappings and balance equations of a solid body

undergoing finite deformations. Apart from the reiteration of some basic relations in

continuum mechanics, it is also aimed to introduce the notation and terms used in the

numerical implementation. The following is based on the books of Bonet and Wood (1997),

Basar and Weichert (2000), De Souza Neto et al. (2008), and Holzapfel (2000).

77
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5.2 Motion and deformation

Considering a general structural problem described by the initial configuration Ω0 of

the structure at time t0. The material particle initially located at some position X ∈
Ω0 in space moves to a new position x ∈ Ω in the current configuration Ω at time t.

Under the postulate of conservation of mass, there is a one-to-one (and hence invertible)

correspondence between X and x, so is possible to define the motion as

x = φ(X, t), with X = φ−1(x, t) (5.1)

Now consider two neighboring particles, located at X and at X + dX in the initial

configuration. In the current configuration, it follows that

x+ dx = φ (X+ dX, t) . (5.2)

Assuming that, for each time t, the mapping φ(•) is smooth, Eq. (5.2) can be expanded

in a Taylor series as

x+ dx = φ(X, t) +
∂φ(X, t)

∂X
dX+O(dX2). (5.3)

Subtracting 5.3 from 5.1, and neglecting the higher order terms (O), one may write

dx =
∂φ (X, t)

∂X
dX = F (X, t) dX. (5.4)

with F denoting the gradient, on the reference configuration, of the deformation function

φ, i.e., F = Grad(x).

5.3 The initial boundary-value problem

The finite element method requires the formulation of balance laws in the forms of vari-

ational principles in order to provide approximate solutions for the underlying initial

boundary-value problem. Good approximate solutions are often related to the weak forms

of field equations, which are consequences of the stationary condition of the functional.

5.3.1 Strong formulation

Considering only mechanical variables, given the body force, and the boundary and initial

conditions, find the displacement u(X, t) = x(X, t)−X, so that

div(σ) + q = ρü (5.5)

u = û on Ωu (5.6)

t = σn = t̂ on Ωt (5.7)

u(x, 0) = u0(X) (5.8)

u̇(x, 0) = u̇0(X) (5.9)
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where q and t are the volume forces per unit deformed volume and surface forces, acting

upon the boundary surface, per unit deformed area. The body density in deformed con-

figuration is given by ρ = ρ(x, t). The over-hat (•̂) symbol denotes prescribed functions

on the boundaries ∂Ω(•). ∂Ω defines the boundary surface of a continuum body occupying

region Ω. It is decomposed in disjoint parts so that

∂Ωu ∩ ∂Ωt = ∅ and ∂Ωu ∪ ∂Ωt = ∂Ω. (5.10)

The set of equations (5.5 to 5.9) defines the nonlinear initial boundary-value problem

for the unknown displacement field u, where Eq. (5.5) is the Cauchy’s first equation of

motion, governed by the symmetry condition σ = σT . This symmetry is a result of the

balance of angular momentum. Nevertheless, as a consequence of the axiom of momentum

balance, the dependence of the surface force t upon the normal vector n is linear. Finally,

equations (5.5 to 5.9) are required in order to achieve compatibility of the boundary and

initial conditions on ∂Ωu

5.3.2 Two-field Variational Principles

A numerical analysis of nearly incompressible and incompressible materials necessitates

the so called multi-field variational principles in which additional variables are incorpo-

rated. Considering an elastic energy density given by the decomposition

W = W̄(C̄) + U(J) (5.11)

where the function W̄ characterizes the isochoric elastic response of the hyperelastic mate-

rial with corresponding modified right Cauchy-Green tensor C̄ = J−2
3C, and U represents

the volumetric energy in function of the volume ratio J = (detC)
1
2 . In the following, the

over-bar (•̄) symbol denotes isochoric part of (•). Utilizing p as the Lagrange multiplier

to enforce the incompressibility constraint J = 1, it is possible to formulate, in material

description, a functional ΠL in the decoupled representation

ΠL(u, p) = Πint(u, p) + Πext(u) (5.12)

with

Πint(u, p) =

∫
Ω0

[
W̄(C̄(u)) + p(J(u)− 1)

]
dV (5.13)

where the term p(J(u) − 1) denotes the Lagrange multiplier term, and p is the physical

hydrostatic pressure. For simplicity, the following development assumes that loads do not

depend on the motion of the body, i.e., Πext(u) is a linear function of u, then one obtains

Πext(u) = −
∫
Ω0

q0·u dV −
∫
Ω0

t̂0 · u dV. (5.14)

In addiction to the virtual displacement field δu, an arbitrary smooth scalar function

δp(x) = δp(φ(X)) = δp(X) is needed, it is interpreted as the virtual pressure field. Using

the Gâteaux derivate D, the stationary conditions with respect to u and p are given by

DδuΠL(u, p) = 0 and DδpΠL(u, p) = 0 (5.15)
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for all δu = 0 on the boundary surface ∂Ω0u and all δp. By means of straightforward

tensor manipulations, one can easily establish that

DδuΠL(u, p) =

∫
Ω0

[
2
∂W̄(C̄(u))

∂C
+ p J(u)C−1(u)

]
: δE(u) dV +Πext(u) = 0 (5.16)

where

S̄ = 2
∂W̄(C̄(u))

∂C
(5.17)

Svol = p J(u)C−1(u) (5.18)

are respectively the isochoric and volumetric parts of the second Piola-Kirchhoff stress

tensor S. The Green-Lagrange strain tensor is denoted by E = 1
2(C− I).

On the other hand, the directional derivative in the direction of an arbitrary virtual

pressure δp, is given by the weak form

DδpΠL(u, p) =

∫
Ω0

(J(u)− 1)δp dV = 0. (5.19)

As can be seen, the pressure variable p maintains the incompressibility constraint and the

associated equilibrium equations is find to be J = 1. The variational equations (5.16 and

5.19) provide the fundamental basis for a finite element implementation. They lead to

mixed or hybrid methods on the interpolation functions for finite element method. The

choice of these functions is a crucial task in order to alleviate volumetric locking. It was

observed that discontinuous constant pressure and continuous displacement interpolation

over a typical element domain is computationally more efficient than the choice of functions

of the same order for u and p (Abaqus Manual, 2010).

5.3.3 Linearization of the Lagrange multiplier method

In theoretical continuum mechanics, the concept of linearization is essential in the deriva-

tion of linear approximations to general nonlinear theories. In computational mechanics,

on the other hand, the interest in linearization stems mostly from the fact that numerical

solutions to nonlinear problems are usually obtained by algorithms which require the solu-

tion of a sequence of linearized (or approximately linearized) problems. A typical example

is the well-known Newton-Raphson iterative scheme, which is extensively exploited in the

finite element framework.

In order to solve the nonlinear equations (5.16) and (5.19) for the two independent

variables u and p using a interactive solution technique, essentially the second variation

of Eq. (5.12) is required in the direction of the increments ∆u, ∆p. Then, starting with

the ∆p direction, one obtains

D2
δu,∆pΠL(u, p) =

∫
Ω0

J(u)∆pC−1(u) : δE(u) dV =

∫
Ω0

J(u)∆pDiv(δu) dV (5.20)

D2
δp,∆pΠL(u, p) = 0 (5.21)

while the linearization in the ∆u direction, leads to

D2
δu,∆uΠL(u, p) =

∫
Ω0

Grad(δu) : Grad(∆u)S+ FTGrad(δu) : C L : FT Grad(∆u) dV
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(5.22)

D2
δp,∆uΠL(u, p) =

∫
Ω0

J(u)Div(∆u) δp dV (5.23)

The structure of Eqs. (5.20 to 5.23) is symmetric, hence a finite element implementa-

tion of this set of equations leads to a symmetric tangent stiffness matrix. Since Eq.(5.16)

is based on the additive decomposition of the stresses S the decoupled representation of

the Lagrangian elasticity tensor C L = C̄ L
+C L

vol is obtained, split into deviatoric C̄ L
and

pressure components C L
vol, as

C̄ L
= 2

∂S̄

∂C
= 4

∂2W̄
∂C2

(5.24)

C L
vol = 2

∂Svol

∂C
= J

∂U
∂J

[
C−1 ⊗C−1 + 2

∂C−1

∂C

]
+ J2∂

2U
∂J2

C−1 ⊗C−1 (5.25)

where the arguments have been omitted. Note that the pressure component C L
vol does

not depend on the particular material definition. The last term in Eq. (5.25) is usually

called the volumetric tangent component.

5.4 Finite element implementation

5.4.1 The user-defined material subroutine

Several commercial finite element packages provide a facility for user-defined material

models and the advantages of each software is not discussed in this work. The Abaqus

software was used in this work as a matter of availability. It may, therefore, be useful to

start with a brief outline of the way that Abaqus handles such models.

The equation of motion together with the constitutive law define a system consisting

of an initial boundary problem and an ordinary differential equation. The equation of

motion is solved with the help of a finite-element package (Abaqus–Standard), and the

constitutive law by a solver for ordinary differential equations. The relevant constitutive

information is passed to Abaqus by a subroutine UMAT which has to be supplied by the

user. Considering a problem in large transformations with both, geometric and material

nonlinearities, the problem must be time discretized and calculations performed using suc-

cessive time steps in an implicit integration scheme. Abaqus–Standard (Abaqus Manual,

2010) uses an implicit integration method and the package operates by solving the follow-

ing differential equation

δτ = J(C : δD+ δWσ + σ δWT ) (5.26)

where τ = Jσ is the Kirchhoff stress tensor, C is the consistent tangent modulus (which

Abaqus calls the Jacobian), δD is the virtual rate of deformation and δW is the virtual

spin tensor.

Essentially, the UMAT must provide consistent tangent modulus, i.e., the tangent

modulus of a discretized constitutive relation. With the knowledge of the consistent tan-

gent modulus, it is possible to update the stresses and solution-dependent state variables
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to their values at the end of the increment for which it is called. The precise information

on the tangent modulus is essential to achieve fast convergence in Newton-type iteration

performed by Abaqus. Table 5.1 summarizes the UMAT/Abaqus data flow. The main

interactions between Abaqus and the UMAT, are given by the following steps:

• Step 1: starting from an equilibrium at time tn, Abaqus performs an incremental

loading. At an equilibrium time tn, Abaqus supplies the stress at the start of the

increment σn, the strain at the start of increment Fn, the trail strain increment

∆Fn
trial and the time period for the increment ∆t;

• Step 2: the user subroutine UMAT has to supply Abaqus with new stress tensor

σn+1 = σn + ∆σn updated according to the constitutive law as well as with the

derivative of stress with respect to the strain increment;

• Step 3: strain update F(tn +∆t) = F(tn) + ∆F(tn) by Abaqus;

• Step 4: with the above information, a new guess for the strain increment is calculated

∆Fn+1 and the whole procedure is iterated until convergence.

Table 5.1: The UMAT/Abaqus data flow. (Sands, 2009)

The UMAT receives (for every integration point):

(1) the stress at the start of the increment σn ;
(2) the strain at the start of the increment Fn

(3) the strain increment ∆F;
(4) the time period for the increment ∆t;
(5) the material properties;
(6) and the state variables related to the start of the increment.

The UMAT must return the following to Abaqus:

(1) the stress at the end of the increment σn+1 = σn +∆σn;
(2) the consistent tangent modulus C ;
(3) and the updated state variables related to the end of the increment.

Since in Abaqus a rate–form formulation is adopted, where the problem is defined

through the variation in Kirchhoff stress, the equations of Section 5.3.3 are modified to

take into account the new reference configuration. The updated Lagrange elastic tensor

(Martin Borret, 1998) after some manipulations it is given by

C Lr = [σ ◦ S+ S ◦ σ] + 1

J
F ◦

[
∂S

∂E
: (FT ◦ S ◦ F)

]
◦ FT . (5.27)
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The two terms in the last equation are respectively the convection term and the transport

term of the initial configuration to the current configuration, and it can be rewritten as:

C Lr = [σ ◦ S+ S ◦ σ] + 1

J
Φ∗
[
C L
]
= [σ ◦ S+ S ◦ σ] + 1

J
C e (5.28)

where Φ∗ is the push–forward operation. Note that the (◦) symbol represents the con-

tracted product, defined with respect to an orthonormal basis as

[A ◦B]ijkl = AipklBpj (5.29)

[B ◦ A ]ijkl = BiqAqjkl (5.30)

where A and B are fourth and second order generic tensors, respectively.

The updated Lagrangian elasticity tensor is therefore deduced from the calculation

of the Lagrangian elasticity tensor and Eulerian stress tensor by Eq.(5.28). Thus, the

implementation of a constitutive relation in Abaqus requires the calculation of Eulerian

stresses and updated Lagrangian elasticity.

5.5 The anisotropic potential energy definition

In Chapter 4, the decomposition of the strain energy into a part that represents the energy

density of the chains linked to filler (W̄cf ) and other part representing the energy density

of the chains linked to other chains (W̄cc) was proposed. Using a simple power function

to represent the stress softening evolution (F (i)) for each direction i, demonstrates to be

very efficient to represent the experimental data from different pre-conditioning methods.

For convenience, the global stored energy and the evolution equation are then rewritten,

respectively, as

W̄(Ī1, Ī2, Ī4) = C1(Ī1 − 3) + C2(Ī2 − 3) +

n∑
i

K(i) (w
(i)
I4
)F (i) (Ī

(i)
4 − 1)2 (5.31)

F (i) = 1− η

√
G − I
G

√
M(i)

max −M(i)

G

(
M(i)

max

G

)2

. (5.32)

Note that the evolution function depends on the maximum elongational energy in the

direction a
(i)
0 (M(i)

max); the maximum elongational energy in any direction at the current

time (I); and the maximum stored energy in any direction over the history (G). Consid-
ering a finite element interactive scheme, the time integration of these energy quantities

requires a supplementary effort in the user-material numerical implementation. In fact,

the stress cannot be directly calculated thanks to the deformation state as Mullins effect is

governed by the stored energy, i.e., the strain and the stress states. An interactive scheme

should be implemented which leads to a additional interaction loop in the software with

all the linearization problem. An adaptation of the constitutive equation can simplify the

implementation problem.
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5.5.1 Modified stress softening constitutive equation

In order to obtain a more suitable constitutive equation for the numerical implementation

into finite element code, a derived form from Eq. (5.32) is proposed. As can be seen in

Eq. (5.31), the function energy W̄ has a first order dependence of the first invariant (I1)

and a second order dependence from the fourth invariant (I4). Consequently, the energy

measure is dependent of (I1) and (I4)
2 in the constitutive equation. Based on these

observations, the local directional energies M(i) are replaced for the (I
(i)
4 )2 measures and

the global energy measure G is replaced for linear dependence of I1 our I4 measure, keeping

same balance between the terms ratio of the multiplicative form from Eq. (5.32). Thus,

the simplified evolution equation is obtained as the following form

F (i) = 1− η

√
Ī1max − Ī1
Ī1max − 3

(
Ī
(i)
4max − Ī

(i)
4

Ī
(i)
4max − 1

)(
Ī
(i)
4max

Ī4max

)4

(5.33)

The model is fitted on all the experimental data of Machado et al. (2010, 2011a),

using the same procedure employed to complete energy model from Chapter 4. Table 5.2

presents the material parameters. Note that, the parameters of the hyperelastic constitu-

tive equations, fitted on the different first loading curves, are the same as for the complete

energy model. This is expected since the first loading curve is independent of the evolu-

tion functions. The parameter that describes the stress-softening is fitted on the second

loading curves for all the tests, the value η = 4.0 is obtained.

Table 5.2: Constitutive parameters for the simplified model.

Parameter Value

C1 0.05MPa
C2 0.03MPa

∀i K(i) 0.10MPa
η 4.0

.

The simulations of the cyclic uniaxial tensile, pure shear and equibiaxial tensile tests

are presented in Fig. 5.1. It appears that the model describes well the stress softening for

all these tests. The simplified model predicts well uniaxial and pure shear tests whereas

equibiaxial tests are underestimated. This phenomenon, as for the original model (Chap-

ter 4), is expected since first loading depends on the hyperelastic equation and not on the

stress evolution function.

The simplified model is now compared with the experimental data of the two pre-

conditioning methods presented in Machado et al. (2011a). First, in Fig. 5.2, for tensile

tests with a change of loading direction between the first and second loads. Results from

the simplified model does not superpose exactly experimental data, but all trends are quite

well described for different directions. Second, the simplified model results are compared

with biaxial pre-stretching tests results. The comparison of the second loading curves is

presented in Fig. 5.3. It appears that the stress softening is slightly overestimated but the

return point on the first loading curve is perfectly described.



5.5. THE ANISOTROPIC POTENTIAL ENERGY DEFINITION 85

Figure 5.1: Comparison of the simplified model (solid lines) with experimental data (dot-
ted lines) from Machado et al. (2011a) (a) cyclic uniaxial tensile test, (b) cyclic pure shear
test (c) cyclic equibiaxial test.
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Figure 5.2: Comparison of the model with uniaxial pre-stretching experimental data (dot-
ted lines). (a) Tensile test oriented at 0◦ (d) Tensile test oriented at 30◦ (e) Tensile test
oriented at 45◦ (f) Tensile test oriented at 90◦
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Figure 5.3: Comparison of the model (solid lines) with biaxial pre-stretching experimen-
tal data (dotted lines). Curve a simulation of the model for the second load after an
equibiaxial test; curve g simulation of the model for the second load after a biaxial test of
biaxiality rate µ = 0.7; curve h simulation of the model for the second load after a biaxial
test of biaxiality rate µ = 0.5

5.5.2 Stress and tangent modulus calculation

Considering the simplified model proposed in the last section, the strain energy density

depends on the first, second and fourth invariants, i.e., W = W(I1, I2, I
(i)
4 ). As aforemen-

tioned, the numerical implementation needs a quasi-incompressible formulation, thus the

Eq. (5.11) is rewritten in terms of invariants as follows

W = W̄(Ī1, Ī2, Ī4
(i)
) + U(J) (5.34)

with Ī1 = I
−1/3
3 I1, Ī2 = I

−2/3
3 I2, Ī3 = 1 et Ī4

(i)
= I

−1/3
3 I

(i)
4 . After the decomposition

given in Eq. 5.34, the second Piola-Kirchhoff stress tensor is given by the strain energy

derivation with respect to the right Cauchy-Green tensor, as

S = S̄+ Svol = 2
∂W̄
∂C

+ J
∂U
∂J

C−1. (5.35)

Developing the deviatoric stress term, one obtains

S̄ = 2

{
∂W̄
∂Ī1

∂Ī1
∂C

+
∂W̄
∂Ī2

∂Ī2
∂C

+

n∑
i=1

∂W̄
∂Ī4

(i)

∂Ī4
(i)

∂C

}
(5.36)
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and the Lagrangian deviatoric tangent modulus, is finally given by

C̄ L
= 4

{
∂

∂C

(
W̄,1

∂Ī1
∂C

)
+

∂

∂C

(
W̄,2

∂Ī2
∂C

)
+

n∑
i=1

∂

∂C

(
W̄,

(i)
4

∂Ī4
(i)

∂C

)}
(5.37a)

= 4

{
H L

1 +H L
2 +

n∑
i=1

H (i)L
4

}
(5.37b)

As aforementioned, the push–forward operation Φ∗

[
C̄ L

+ C L
vol

]
is necessary. Keeping in

mind the push–forward relations Φ∗,

Φ∗(I) −→ B (5.38)

Φ∗(C
−1) −→ I (5.39)

Φ∗(C) −→ B2 (5.40)

Φ∗

(
∂C−1

∂C

)
−→ −S, where Sijkl =

1

2
(δikδjl + δilδjk)

† (5.41)

Φ∗ (a0 ⊗ a0) −→ (a⊗ a) (5.42)

Φ∗ (S) −→ S∗, where S∗
ijkl =

1

2
(BikBjl +BilBjk)

† (5.43)

one obtains, by means of straightforward tensor manipulations (see AppendixC for tensor

derivatives relations), the Eulerian H e terms that compose the deviatoric part of the

tangent modulus, which are given by

H e
1 =

1

J
Φ∗(H L

1 ) (5.44)

= W̄,11
1

J

[
(B̄− 1

3
Ī1I)⊗ (B̄− 1

3
Ī1I)

]
+W̄,1

1

J

[
−1

3

(
I⊗ (B̄− 1

3
Ī1I) + B̄⊗ I− Ī1S

)]

H e
2 =

1

J
Φ∗(H L

2 ) (5.45)

= W̄,22
1

J

[
(Ī1B̄− B̄

2−2

3
Ī2I)⊗ (Ī1B̄− B̄

2−2

3
Ī2I)

]
+W̄,2

1

J

{
−2

3
I⊗ (Ī1B̄− B̄

2−2

3
Ī2I) +

[
B̄⊗ B̄−S∗−2

3

(
Ī1B̄− B̄

2
)
⊗ I+

2

3
Ī2S
]}

H (i)e
4 =

1

J
Φ∗(H

(i)L
4 ) (5.46)

= W̄,
(i)
44

{[
(ā⊗ ā)−1

3
Ī4

(i)
I

]
⊗
[
(ā⊗ ā)−1

3
Ī4

(i)
I

]}
+W̄,

(i)
14

{[
(ā⊗ ā)−1

3
Ī4

(i)
I

]
⊗ (B̄− 1

3
Ī1I)

}
+W̄,

(i)
4

(
−1

3

)[
I⊗

[
(ā⊗ ā)−1

3
Ī4

(i)
I

]
+ (ā⊗ ā)⊗I− Ī4

(i)S
]
.

†with respect to an orthonormal basis.
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The volumetric part of the tangent modulus in Eulerian form, given by

C e
vol =

[
∂U
∂J

+ J
∂2U
∂J2

]
(I⊗ I)− 2

∂U
∂J

S (5.47)

will depend on the choice of the penality function. Using the same function used in

Abaqus, the energy density that represents the volumetric part is given by

U =
1

D1
(J − 1)2 (5.48)

where D1 determines the compressibility of the material. If D = 0, the material is taken

as fully incompressible. The volumetric strain energy function U satisfies the condition

U = 0 for J = 1. Note that, for a quasi-incompressible response, the form of Eq. (5.48) is

not a key point. The most important is to keep an adequate ratio between the bulk and

the shear moduli of the material. If one wants to describe volume variation, several other

function forms have been proposed for the volumetric term, see for example in Doll and

Schweizerhof (2000), Bischoff et al. (2001) and references herein. Thereby, it is possible

to rewrite the Eq. (5.47), using the quadratic function from Eq. (5.48), as

C e
vol =

[
2

D1
(2J − 1)

]
(I⊗ I)−

(
2J
∂U
∂J

)
S (5.49)

The convection term can be written using the Cauchy stress tensor σ and the fourth

order symmetric tensor S as

(σ ◦ S+ S ◦ σ)ijkl =
1

2
(σikδjl + σilδjk + σjlδik + σjkδil). (5.50)

Finally, the tangent modulus that the UMAT must return to Abaqus is given by

C Lr = [σ ◦ S+ S ◦ σ] + 4[H e
1 +H e

2 +H e
4] +

[
2

D
(2J − 1)

]
(I⊗ I) (5.51)

The stress and the tangent modulus are given by the first and second derivates of

the strain energy function with respect to the first, second and fourth invariants. Thus,

the above formulation is relevant for any energy form that depends on these invariants.

Considering now the simplified model proposed in Section 5.5, the energy derivates with

respect to the fourth invariant in Eq. (5.46) are given by

W̄,
(i)
4 = 2k (w

(i)
I4
)F (i) (Ī

(i)
4 − 1) (5.52)
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∂Ī
(i)
4

(Ī
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W̄,
(i)
14 =

∂

∂Ī1
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with the following conditions
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5.5.3 UMAT validation

The main idea is to validate numerical implementation of the simplified model into Abaqus

FEA code. In this way, the TT experiments of Chapter 3 were simulated. A wide plate

was designed and the subsamples are previously orientated on the plate, forming a set

of four different directions, as shown in Fig. 5.4(a). The element choice was the three-

dimensional 8–node linear element (C3D8H) with hybrid constant pressure interpolation.

The constant pressure and continuous displacement interpolation is fundamental in order

to alleviate volumetric locking.

Figure 5.4: Three-dimensional finite element model from a RTV3428 plate. (a) Unde-
formed configuration. (b) Deformed configuration (first load).
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An uniaxial tensile loading cycle (load–unload) was performed on the plate and Fig. 5.4(b)

shows the deformed configuration at the end of the load step. After unloading of the plate,

the command line *MODEL CHANGE is used to remove undesirable elements during an

analysis, therefore, the effect of the removed region on the rest of the model is completely

absent and no further element calculations are performed for elements that being removed.

See Abaqus Manual (2010) for details. This feature permits to simulate the experimental

subsamples, cut in different directions on the pre-stretched plate, as shown in Fig. 5.5(a).

Finally, a second uniaxial tensile loading cycle is performed on each subsample, respecting

their orientations. Fig. 5.5(b) shows the end of the load step on each subsample.

The FEA results were first confronted with the analytical solutions, and a perfect

agreement was observed, as shown in Fig. 5.6. This permits to validate the implementation

of the model in Abaqus. Finally, Fig. 5.7 presents the FEA results, the original model from

Chapter 4 and the uniaxial pre-conditioning experimental data.

Figure 5.5: The directional subsamples cut details. (a) After pre-stretching. (b) Deformed
configuration (second loading).
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Figure 5.6: FEA results validation by comparing FEA simulations and analytical results.

Figure 5.7: FEA results (solid lines) using the simplified model version, the original ana-

lytical model from Chapter 4 (dash-dotted lines) and the uniaxial pre-conditioning exper-

imental data (dotted lines).
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5.6 Conclusion

The constitutive modeling of the stress softening of a particle filled elastomer is a com-

plicated problem. In this Chapter a simplified version of the proposed constitutive model

for induced anisotropy by Mullins effect was proposed. The simplified model captured all

the experimental data trends.

The simplified model, with a modified evolution function, was implemented into Abaqus

Standard via an user-defined material subroutine, UMAT. Finite element analysis was

performed to simulate the anisotropic response of a filled silicone-rubber regarding stress

softening in four different directions. The FEA results exhibit relatively good agreement

with the experimental data. In future work, the softening evolution function expressed in

terms of energies (M) may be also implemented in an UMAT.

Comparison between the FEA results and experimental data as well the validation

using analytical forms showed that the constitutive model and its finite element imple-

mentation in a commercial finite element code provide an useful and dependable numerical

tool for modelling three-dimensional structures, more precisely, in the context of this work,

the RAAMO ell-robot skin.





General Conclusion and Outlook

An essential aspect of the present work is the construction of an unprecedented experimen-

tal data dealing with the study of the induced anisotropy by Mullins effect. A considerable

effort was made to develop a protocol to manufacture silicone samples under controlled

conditions. This step was fundamental to propose an experimental methodology for me-

chanical tests. Reproducibility and accuracy of measurements were evaluated through

successive mechanical tests frequently performed on rubbers. Results showed that our

protocol to manufacture the silicone specimens and our experimental methodology work

well and provide a precise experimental characterization of silicone rubber.

Using the proposed methodology, experimental results that illustrate stress softening

in particle-reinforced silicone rubber were obtained. These results allowed to analyze

the stress softening for three different loading cases: uniaxial, planar and equibiaxial

tensile tests. In this last loading case, the conventional application of the bulge test was

used to determine the equibiaxiality of the stress and strain obtained at the top of the

sample. A representative selection of the existent isotropic models of Mullins effect was

investigated. Under the light of the three different loading cases results, the limitations

of these models were evaluated. Nevertheless, the analysis of these experimental data

proved that proportionality between second loading curves is not a good way to model

the strain-stress curves. Thus, two main ways to well describe the Mullins effect could be

noticed. The first one, by using a non-constant multiplicative function on second loading

curves, the second one by using different non-proportional functions. These two ways,

correspond to double-network and physical approaches, respectively. However, the above

results are not sufficient to characterize the anisotropic nature of Mullins effect.

Considering the large strain level in rubbery mechanical analysis, a special atten-

tion in this study was given to the use of non-contact full field strain measures, notably

the three-dimensional digital image correlation method. In this thesis, a method which

enriches greatly the analysis of usual bulge tests by using the 3D-DIC technique was pro-

posed. The determination of the curvature tensor fields from 3D-DIC data allowed to

determine the planar stress-strain fields associated with the membrane inflation problem

without any constitutive equation assumption. Finally, the bulge test can be used as one

very rich heterogeneous mechanical test which allows obtaining valuable information for

testing different types of materials for a wide range of stress-strain states ranging from
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equibiaxial to planar tensile stress state. This feature was exploited to produce an original

preconditioning method to study the anisotropy induced by the Mullins effect.

The use of the bulge test, as a biaxial preconditioning test, was originally proposed

to find an evidence for an even more complex memory behavior of the material. The

measurements made along the meridian of the inflated membrane provide unprecedented

information about the history of principal stress and principal strain directions and results

clearly showed that the induced anisotropy is dependent on the pre-stretch biaxiality ratio.

The analysis of these data permits to highlight that the maximum elongational energy in

the maximum principal direction is the governing parameter that defines the return–point

on the virgin tensile loading curve.

Based on the experimental observations, a new network model for finite elasticity of

rubber-like materials was proposed. This model can be seen as a cornerstone for all the

subsequent developments concerning the induced anisotropy by Mullins effect applied to

the finite inelasticity of rubbery. The form of modeling is built by superposing a classical

isotropic hyperelastic model and a stress-softening part based on the double network the-

ory. The core of the proposed model is a new measure for the amount of stress-softening.

An energetically motivated tensor measure was introduced to represent the repartition of

the elongational energy in space. With this new measure, it becomes possible to establish

a relation between the strain energy in each direction in the polymer network and the

maximum global energy, defining the three-dimensional overall response of the material.

The overall model contains one effective material parameter to describe the evolution of

the Mullins effect, which was fitted on the second tensile loading curves for all the tests.

Finally, the developed model was tested against experimental data for homogeneous and

inhomogeneous deformations. In the last case, the model was confronted with the results

obtained from very different strain histories, owing to the different preconditioning meth-

ods experimentally employed. This new approach captures the principal characteristics

of the Mullins effect underlined in literature using a simple constitutive form, that only

depends on one parameter.

In the final part of the thesis, a simplified constitutive model for a fast implementa-

tion into a commercial finite element code was developed. The formulation makes use of

the intrinsic features of the original model. The obtained results indicate the predictive

performance of the proposed model and its high suitability for the finite element analysis

of boundary-value problems. Comparison between the finite element analysis results and

experimental data as well as the validation using analytical forms showed that the con-

stitutive model and its finite element implementation in a commercial finite element code

provide an useful and dependable numerical tool.

The proposed constitutive equation can now be used to calculate real engineering struc-

tural parts. Future comparisons between finite element simulations and 3D-DIC data from

experimental tests will permit to validate the model for even more complex deformation

paths. In this case, special attention needs to be given on the convergence analysis. Nev-

ertheless, the model can be improved by working on the choice of functions used in the

constitutive equations for improving the agreement with experimental data. Due to the

simplicity of the model, future studies should also include viscoelastic, hysteresis and

thermal effects.
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Appendix

A Surface curvatures code

The MatLab routine used to evaluate the surface curvatures.

1 function [K,H,Ki,Kii] = scurvature(X,Y,Z,gs)

2 % scurvature − compute gaussian, mean and

3 % principal curvatures of a surface

4 %

5 % [K,H,Ki,Kii] = scurvature(X,Y,Z,gs), where:

6 % − X,Y,Z are matrix of points on the surface.

7 % − gs spacing between points in every direction. (Default gs=1)

8 % − K the gaussian curvature.

9 % − H the mean curvatures.

10 % − Ki and Kii are minimum and maximum curvatures at each point.

11

12 % First Derivatives

13 [Xu,Xv]=gradient(X,gs);

14 [Yu,Yv]=gradient(Y,gs);

15 [Zu,Zv]=gradient(Z,gs);

16

17 % Second Derivatives

18 [Xuu,Xuv]=gradient(Xu,gs);

19 [Yuu,Yuv]=gradient(Yu,gs);

20 [Zuu,Zuv]=gradient(Zu,gs);

21

22 [Xuv,Xvv]=gradient(Xv,gs);

23 [Yuv,Yvv]=gradient(Yv,gs);

24 [Zuv,Zvv]=gradient(Zv,gs);

25

26 % Reshape 2D Arrays into vectors

27 Xu=Xu(:); Yu=Yu(:); Zu=Zu(:);

28 Xv=Xv(:); Yv=Yv(:); Zv=Zv(:);

29 Xuu=Xuu(:); Yuu=Yuu(:); Zuu=Zuu(:);

30 Xuv=Xuv(:); Yuv=Yuv(:); Zuv=Zuv(:);

31 Xvv=Xvv(:); Yvv=Yvv(:); Zvv=Zvv(:);

32
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33 Xu=[Xu Yu Zu];

34 Xv=[Xv Yv Zv];

35 Xuu=[Xuu Yuu Zuu];

36 Xuv=[Xuv Yuv Zuv];

37 Xvv=[Xvv Yvv Zvv];

38

39 % First fundamental form coeffecients (g11,g12,g22)

40 g11=dot(Xu,Xu,2);

41 g12=dot(Xu,Xv,2);

42 g22=dot(Xv,Xv,2);

43

44 % Normal vector (g3)

45 m=cross(Xu,Xv,2);

46 p=sqrt(dot(m,m,2));

47 g3=m./[p p p];

48

49 % Second fundamental Coeffecients of the surface (b11,b12,b22)

50 b11=dot(Xuu,g3,2);

51 b12=dot(Xuv,g3,2);

52 b22=dot(Xvv,g3,2);

53

54 [s,t] = size(Z);

55

56 % Gaussian Curvature (K)

57 K=(b11.*b22 − b12.ˆ2)./(g11.*g22 − g12.ˆ2);

58 K=reshape(K,s,t);

59

60 % Mean Curvature (H)

61 H=(g11.*b22 + g22.*b11 − 2.*g12.*b12)./(2*(g11.*g22 − g12.ˆ2));

62 H=reshape(H,s,t);

63

64 %% Principal Curvatures.

65 Ki=H+sqrt(H.ˆ2 − K);

66 Kii=H−sqrt(H.ˆ2 − K);

67

68 %end scurvature
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B The material directions construction

The proposed model uses n = 2×21 integration points with cartesian coordinates defined

in TableB.1. Only the 21st direction are summarized, the 21 others are their opposite.

The directions are represented on the unit sphere by the end point of each vector, the

origin being the point O for each vector. Some points are represented for a eighth of space

in Fig. B.1. The other directions are obtained by a symmetry with respect to the plan

(O,X1, X2); (O,X2, X3) et (O,X1, X3).

Table B.1: Direction cosines and weights for 2 × 21 points (orthonormal symmetries) of

each vector a
(i)
0 .

i direction X1 X2 X3 w
1 0 0 1 0.0265214244093
2 0 1 0 0.0265214244093
3 1 0 0 0.0265214244093
4 0 0.707106781187 0.707106781187 0.0199301476312
5 0 -0.707106781187 0.707106781187 0.0199301476312
6 0.707106781187 0 0.707106781187 0.0199301476312
7 -0.707106781187 0 0.707106781187 0.0199301476312
8 0.707106781187 0.707106781187 0 0.0199301476312
9 -0.707106781187 0.707106781187 0 0.0199301476312
10 0.836095596749 0.387907304067 0.387907304067 0.0250712367487
11 -0.836095596749 0.387907304067 0.387907304067 0.0250712367487
12 0.836095596749 -0.387907304067 0.387907304067 0.0250712367487
13 -0.836095596749 -0.387907304067 0.387907304067 0.0250712367487
14 0.387907304067 0.836095596749 0.387907304067 0.0250712367487
15 -0.387907304067 0.836095596749 0.387907304067 0.0250712367487
16 0.387907304067 -0.836095596749 0.387907304067 0.0250712367487
17 -0.387907304067 -0.836095596749 0.387907304067 0.0250712367487
18 0.387907304067 0.387907304067 0.836095596749 0.0250712367487
19 -0.387907304067 0.387907304067 0.836095596749 0.0250712367487
20 0.387907304067 -0.387907304067 0.836095596749 0.0250712367487
21 -0.387907304067 -0.387907304067 0.836095596749 0.0250712367487
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Figure B.1: The material directions construction. The set of direction a
(i)
0 is defined by

the polyhedron vertices.
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C Tensor derivatives relations

C.1 Derivative of a tensor with respect to itself

Let A be a second order tensor. Then

∂A

∂A
: T =

[
∂

∂α
(A+ αT)

]
α=0

= T = I : T

Therefore,

∂A

∂A
= I

Here I is the fourth order identity tensor. In index notation with respect to an orthonormal

basis

I = δikδjl ei ⊗ ej ⊗ ek ⊗ el

This result implies that

∂AT

∂A
: T = IT : T = TT

where

IT = δjkδil ei ⊗ ej ⊗ ek ⊗ el

Therefore, if the tensor A is symmetric, then the derivative is also symmetric and we get

∂A

∂A
= S =

1

2
(I+ IT )

where the symmetric fourth order identity tensor is

S =
1

2
(δikδjl + δilδjk) ei ⊗ ej ⊗ ek ⊗ el

111



112 APPENDIX C. TENSOR DERIVATIVES RELATIONS

C.2 Derivatives of the principal invariants of a tensor

The principal invariants of a second order tensor are

I1(A) = trA (C.1)

I2(A) =
1

2

[
(trA)2 − trA2

]
(C.2)

I3(A) = det(A) (C.3)

The derivatives of these three invariants with respect to A are ( index notation with

respect to an orthonormal basis)

∂I1
∂A

= I where I =δijei ⊗ ej (C.4)

∂I2
∂A

= I1I−AT (C.5)

∂I3
∂A

= det(A)[A−1]T = I2I−AT (I1I−AT ) = (A2 − I1A+ I2I)
T (C.6)

C.3 Derivative of the determinant of a tensor

The derivative of the determinant of a second order tensor A is given by

∂

∂A
det(A) = det(A)[A−1]T

In an orthonormal basis the components of A can be written as a matrix A. In that case,

the right hand side corresponds the cofactors of the matrix.

C.4 Derivative of J with respect to the deformation gradient

We often need to compute the derivative of J = detF with respect the the deformation

gradient F. From tensor calculus we have, for any second order tensor A

∂

∂A
(detA) = detA A−T

Therefore,

∂J

∂F
= J F−T

C.5 Derivative of J with respect to the right Cauchy-Green de-

formation tensor

The derivative of J with respect to the right Cauchy-Green deformation tensor (C) is also

often encountered in continuum mechanics. To calculate the derivative of J = detF with

respect to C, we recall that (for any second order tensor T)

∂C

∂F
: T =

∂

∂F
(FT · F) : T = (IT : T) · F+ FT · (I : T) = TT · F+ FT ·T
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Also,

∂J

∂F
: T =

∂J

∂C
: (
∂C

∂F
: T) =

∂J

∂C
: (TT ·F+FT ·T) =

[
F · ∂J

∂C

]
: T+

[
F ·
(
∂J

∂C

)T
]
: T

From the symmetry of C we have

∂J

∂C
=

(
∂J

∂C

)T

Therefore, involving the arbitrariness of T, we have

∂J

∂F
= 2 F · ∂J

∂C

Hence,

∂J

∂C
=

1

2
F−1 · ∂J

∂F
.

Also recall that

∂J

∂F
= J F−T

Therefore,

∂J

∂C
=

1

2
J F−1 · F−T =

J

2
C−1

In index notation,

∂J

∂CIJ
=
J

2
C−1
IJ

C.6 Derivative of the inverse of the right Cauchy-Green tensor

Another result that is often useful is that for the derivative of the inverse of the right

Cauchy-Green tensor (C). Recall that, for a second order tensor A,

∂A−1

∂A
: T = −A−1 ·T ·A−1

In index notation

∂A−1
ij

∂Akl
Tkl = Bijkl Tkl = −A−1

ik Tkl A
−1
lj

or,

∂A−1
ij

∂Akl
= Bijkl = −A−1

ik A−1
lj

Using this formula and noting that since C is a symmetric second order tensor, the deriva-

tive of its inverse is a symmetric fourth order tensor we have

∂C−1
IJ

∂CKL
= −1

2
(C−1

IK C−1
JL + C−1

JK C−1
IL )
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